

The Ministry of Education and Science of the Russian Federation

Southern Federal University

A. V. Abramyan, M. E. Abramyan

PROBLEM BOOK
ON PROGRAMMING

SCALAR TYPES, CONTROL STATEMENTS,
PROCEDURES AND FUNCTIONS,

ARRAYS, STRINGS, FILES,
RECURSION, DYNAMIC DATA STRUCTURES

Rostov-on-Don
2014

2

ББК 32.973

 А16

УДК 681.3

Печатается по решению

учебно-методической комиссии

факультета математики, механики и компьютерных наук ЮФУ

от 5 мая 2014 г. (протокол № 8)

Р е ц е н з е н т :

к. ф.-м. н., доцент С. С. Михалкович

Абрамян А. В., Абрамян М. Э.

А16 Сборник задач по программированию: Скалярные типы, управляющие

операторы, процедуры и функции, массивы, строки, файлы, рекурсия,

динамические структуры данных (на англ. языке). — Ростов н/Д,

2014. — 158 с.

Пособие содержит 1100 учебных заданий по основным темам базового курса

программирования. Формулировки заданий приводятся на английском языке, что

позволяет применять пособие в курсах англоязычных учебных программ. В

формулировках не используются понятия и имена, специфические для

конкретного языка программирования.

Пособие предназначено для студентов математических, компьютерных и

естественнонаучных специальностей.

 © А. В. Абрамян, М. Э. Абрамян, 2014

3

Preface

This book of problems on programming contains 1100 learning tasks that

cover almost all sections of a basic programming curriculum — beginning with scalar

types and control statements to complicated data structures and recursive algorithms.

Task texts do not contain notions that are specific for some programming

language. Tasks are divided on 19 task groups:

 Begin — input-output and assignment (40 tasks),

 Integer — integers (30 tasks),

 Boolean — logical expressions (40 tasks),

 If — conditional statement (30 tasks),

 Case — selection statement (20 tasks),

 For — loop with the parameter (40 tasks),

 While — loop with the condition (30 tasks),

 Proc and Func — procedures and functions (60 tasks); the Func group is a

modification of the Proc group for the Python and Ruby languages,

 Series — numerical sequences (40 tasks),

 Minmax — minimums and maximums (30 tasks),

 Array — one-dimensional arrays (140 tasks),

 Matrix — two-dimensional arrays (matrices) (100 tasks),

 String — characters and strings (70 tasks),

 File — binary files (90 tasks),

 Text — text files (60 tasks),

 Param — structured data types in procedures and functions (70 tasks),

 Recur — recursion (30 tasks),

 Dynamic and ObjDyn — dynamic data structures (80 tasks),

 Tree and ObjTree — binary trees (100 tasks).

Programming Taskbook

For more efficient use of this problem book you may use it jointly with the

Programming Taskbook courseware that contains all tasks included in this book

and allows you to solve tasks on various programming languages such as Pascal,

Visual Basic, C++, C#, Visual Basic .NET, Python, Java, Ruby.

The learning options listed below are supported by Programming Taskbook:

 display the task text and corresponding data on screen,

 display correct results for each task,

 subroutines for initial data input and results output,

 additional control of input-output operations,

 automatic correctness checking of results computed by student's program,

 storing running program data into a special log file (file of results),

http://ptaskbook.com/en/tasks/integer.php
http://ptaskbook.com/en/tasks/boolean.php
http://ptaskbook.com/en/tasks/if.php
http://ptaskbook.com/en/tasks/case.php
http://ptaskbook.com/en/tasks/for.php
http://ptaskbook.com/en/tasks/while.php
http://ptaskbook.com/en/tasks/proc.php
http://ptaskbook.com/en/tasks/func.php
http://ptaskbook.com/en/tasks/series.php
http://ptaskbook.com/en/tasks/minmax.php
http://ptaskbook.com/en/tasks/array.php
http://ptaskbook.com/en/tasks/matrix.php
http://ptaskbook.com/en/tasks/string.php
http://ptaskbook.com/en/tasks/file.php
http://ptaskbook.com/en/tasks/text.php
http://ptaskbook.com/en/tasks/param.php
http://ptaskbook.com/en/tasks/recur.php
http://ptaskbook.com/en/tasks/dynamic.php
http://ptaskbook.com/en/tasks/dynamic_obj.php
http://ptaskbook.com/en/tasks/tree.php
http://ptaskbook.com/en/tasks/tree_obj.php

4

 complete register of solved task as result of a series of successful test

program runnings.

The important feature of the Programming Taskbook is its availability for

use in different programming environments:

 Borland Delphi 7.0 and 2006, in particular, Turbo Delphi 2006 for

Windows,

 Free Pascal Lazarus 1.0,

 PascalABC.NET,

 Microsoft Visual Basic 5.0 and 6.0,

 Microsoft Visual C++ 6.0,

 Microsoft Visual Studio 2003, 2005, 2008, 2010, 2012 and 2013 (C++,

Visual Basic .NET, and C# languages),

 IDLE for Python 2.5, 2.6, 2.7, 3.2,

 NetBeans IDE 6.x and 7.x (Java and Ruby languages).

Programming Taskbook sufficiently facilitates educational task execution. It

is due to it performs automatically standard input-output operations unlike manual

coding. Its advantage is especially obvious when performing processing of arrays,

strings, files, and dynamic data structures. Submitting ready input data to students,

Programming Taskbook directs their efforts to the development and program

implementation of the algorithm of the task solving; the variety of input data

submitted by Programming Taskbook provides the effective testing of the offered

algorithm.

You may obtain additional information about the Programming Taskbook on

its website http://ptaskbook.com.

General remarks on data types and terminology

All elements of any sequence of real numbers are supposed to contain different

values, so each sequence of real numbers contains just one minimal and maximal

element. Sequences of integers may contain elements with equal values, so such

sequences may have several elements with minimal and maximal values. Numerical

arrays and files also satisfy these conditions.

If a task does not specify the maximal size of an input array then this size

should be considered as 10 for one-dimensional arrays and 10 10 for two-

dimensional arrays.

The ―order number‖ notion is used for array elements; the first element of one-

dimensional array named A has the order number 1 and is denoted as A1. Similarly,

the first element of two-dimensional array named B is denoted as B1,1. Lines and rows

of two-dimensional array are also numbered from 1. Such approach does not depend

on a specific programming language and corresponds to traditional mathematical

notation.

The ―procedure‖ notion in task texts of Proc, Param, and Dynamic groups

means not only procedures of Pascal but also subroutines of Visual Basic and

functions with the void return type of C++/C#/Java/etc.

5

The ―nil‖ notion is used for empty pointer (as in Pascal language) and the

―null‖ notion is used for empty class reference (as in C# and Java languages).

There are two versions of the Dynamic and Tree groups: the first version uses

records and pointers and is intended for Pascal and C++ languages, the second one

(the ObjDyn and ObjTree groups) uses objects and is intended for C#, Visual Basic

.NET, Python, Java, and Ruby languages. The corresponding types — the TNode

record and the PNode pointer (for Pascal and C++), and the Node class (for

PascalABC.NET, C#, VB.NET, Python, Java, Ruby) — are defined in the preamble

to the Dynamic/ObjDyn and Tree/ObjTree task groups. When using Programming
Taskbook you do not need to define these types because they are already defined in

the Programming Taskbook modules.

1. Input-output and assignment

All input and output data are real numbers in tasks of this group.

Begin1. Given the side a of a square, find the perimeter P of the square: P = 4·a.

Begin2. Given the side a of a square, find the area S of the square: S = a
2
.

Begin3. The sides a and b of a rectangle are given. Find the area S = a·b and the

perimeter P = 2·(a + b) of the rectangle.

Begin4. Given the diameter d of a circle, find the length L of the circle: L = π·d. Use

3.14 for a value of π.

Begin5. Given the edge a of a cube, find the volume V = a
3
 and the surface

area S = 6·a
2
 of the cube.

Begin6. The edges a, b, c of a right parallelepiped are given. Find the volume

V = a·b·c and the surface area S = 2·(a·b + b·c + a·c) of the right parallelepiped.

Begin7. Given the radius R of a circle, find the length L of the circumference and the

area S of the circle:

L = 2·π·R, S = π·R
2
.

Use 3.14 for a value of π.

Begin8. Given two numbers a and b, find their average: (a + b)/2.

Begin9. Given two nonnegative numbers a and b, find their geometrical mean (a

square root of their product): (a·b)
1/2

.

Begin10. Two nonzero numbers are given. Find the sum, the difference, the product,

and the quotient of their squares.

Begin11. Two nonzero numbers are given. Find the sum, the difference, the product,

and the quotient of their absolute values.

Begin12. The legs a and b of a right triangle are given. Find the hypotenuse c and the

perimeter P of the triangle:

c = (a
2
 + b

2
)

1/2
, P = a + b + c.

Begin13. Given the radiuses R1 and R2 of two concentric circles (R1 > R2), find the

areas S1 and S2 of the circles and the area S3 of the ring bounded by the circles:

6

S1 = π·(R1)
2
, S2 = π·(R2)

2
, S3 = S1 − S2.

Use 3.14 for a value of π.

Begin14. Given the length L of a circumference, find the radius R and the area S of

the circle. Take into account that L = 2·π·R, S = π·R
2
. Use 3.14 for a value

of π.

Begin15. Given the area S of a circle, find the diameter D and the length L of the

circumference. Take into account that L = π·D, S = π·D
2
/4. Use 3.14 for a

value of π.

Begin16. Two points with the coordinates x1 and x2 are given on the real axis. Find

the distance between these points: |x2 − x1|.

Begin17. Three points A, B, C are given on the real axis. Find the length of AC, the

length of BC, and the sum of these lengths.

Begin18. Three points A, B, C are given on the real axis, the point C is located

between the points A and B. Find the product of the length of AC and the

length of BC.

Begin19. The coordinates (x1, y1) and (x2, y2) of two opposite vertices of a rectangle

are given. Sides of the rectangle are parallel to coordinate axes. Find the

perimeter and the area of the rectangle.

Begin20. The coordinates (x1, y1) and (x2, y2) of two points are given. Find the

distance between the points:

((x2 − x1)
2
 + (y2 − y1)

2
)

1/2
.

Begin21. The coordinates (x1, y1), (x2, y2), (x3, y3) of the triangle vertices are given.

Find the perimeter and the area of the triangle using the formula for distance

between two points in the plane (see Begin20). The area of a triangle with

sides a, b, c can be found by Heron’s formula:

S = (p·(p − a)·(p − b)·(p − c))
1/2

,

where p = (a + b + c)/2 is the half-perimeter.

Begin22. Exchange the values of two given variables A and B. Output the new

values of A and B.

Begin23. Variables A, B, C are given. Change values of the variables by moving the

given value of A into the variable B, the given value of B into the variable C,

and the given value of C into the variable A. Output the new values of A, B, C.

Begin24. Variables A, B, C are given. Change values of the variables by moving the

given value of A into the variable C, the given value of C into the variable B,

and the given value of B into the variable A. Output the new values of A, B, C.

Begin25. Given an independent variable x, find the value of a function

y = 3x
6
 − 6x

2
 − 7.

Begin26. Given an independent variable x, find the value of a function

y = 4(x−3)
6
 − 7(x−3)

3
 + 2.

7

Begin27. Given a number A, compute a power A
8
 using three multiplying operators

for computing A
2
, A

4
, A

8
 sequentially. Output all obtained powers of the

number A.

Begin28. Given a number A, compute a power A
15

 using five multiplying operators

for computing A
2
, A

3
, A

5
, A

10
, A

15
 sequentially. Output all obtained powers of

the number A.

Begin29. The angle value α in degrees (0 ≤ α < 360) is given. Convert this value into

radians. Take into account that 180° = π radians. Use 3.14 for a value of π.

Begin30. The angle value α in radians (0 ≤ α < 2·π) is given. Convert this value into

degrees. Take into account that 180° = π radians. Use 3.14 for a value of π.

Begin31. A Fahrenheit temperature T is given. Convert it into a centigrade

temperature. The centigrade temperature TC and the Fahrenheit temperature TF

are connected as:

TC = (TF − 32)·5/9.

Begin32. A centigrade temperature T is given. Convert it into a Fahrenheit

temperature. The centigrade temperature TC and the Fahrenheit temperature TF

are connected as:

TC = (TF − 32)·5/9.

Begin33. X kg of sweet cost A euro. Find the cost of 1 kg and Y kg of the sweets

(positive numbers X, A, Y are given).

Begin34. X kg of chocolates cost A euro and Y kg of sugar candies cost B euro

(positive numbers X, A, Y, B are given). Find the cost of 1 kg of the chocolates

and the cost of 1 kg of the sugar candies. Also determine how many times the

chocolates are more expensive than the sugar candies.

Begin35. A boat velocity in still water is V km/h, river flow velocity is U km/h

(U < V). The boat goes along the lake during T1 h and then goes against stream

of the river during T2 h. Positive numbers V, U, T1, T2 are given. Find the

distance S covered by the boat (distance = time · velocity).

Begin36. The velocity of the first car is V1 km/h, the velocity of the second car is

V2 km/h, the initial distance between the cars is S km. Find the distance

between the cars after T hours provided that the distance is increasing. The

required distance is equal to a sum of the initial distance and the total distance

covered by the both cars (total distance = time · total velocity).

Begin37. The velocity of the first car is V1 km/h, the velocity of the second car is

V2 km/h, the initial distance between the cars is S km. Find the distance

between the cars after T hours provided that at the start time the distance is

decreasing. This distance is equal to an absolute value of a difference between

the initial distance and the total distance covered by the both cars.

Begin38. Solve a linear equation A·x + B = 0 with given coefficients A and B (A is

not equal to 0).

8

Begin39. Solve a quadratic equation A·x
2
 + B·x + C = 0 with given coefficients A, B,

C (A and the discriminant of the equation are positive). Output the smaller

equation root and then the larger one. Roots of the quadratic equation may be

found by formula

x1, 2 = (−B ± (D)
1/2

)/(2·A),

where D = B
2
 − 4·A·C is a discriminant.

Begin40. Solve a system of linear equations

A1·x + B1·y = C1,

A2·x + B2·y = C2

with given coefficients A1, B1, C1, A2, B2, C2 provided that the system has the

only solution. Use the following formulas:

x = (C1·B2 − C2·B1)/D, y = (A1·C2 − A2·C1)/D,

where D = A1·B2 − A2·B1.

2. Integers

All input and output data are integer (i. e. whole numbers) in this group. All

numbers with fixed amount of digits (for example, two-digit number, three-digit

number and so on) are assumed to be positive.

Integer1. A distance L is given in centimeters. Find the amount of full meters of this

distance (1 m = 1000 cm). Use the operator of integer division.

Integer2. A weight M is given in kilograms. Find the amount of full tons of this

weight (1 ton = 1000 kg). Use the operator of integer division.

Integer3. A file size is given in bytes. Find the amount of full Kbytes of this size

(1 K = 1024 bytes). Use the operator of integer division.

Integer4. Two positive integers A and B are given (A > B). Segment of length A

contains the greatest possible amount of inside segments of length B (without

overlaps). Find the amount of segments B placed on the segment A. Use the

operator of integer division.

Integer5. Two positive integers A and B are given (A > B). Segment of length A

contains the greatest possible amount of inside segments of length B (without

overlaps). Find the length of unused part of the segment A. Use the operator of

taking the remainder after integer division.

Integer6. A two-digit integer is given. Output its left digit (a tens digit) and then its

right digit (a ones digit). Use the operator of integer division for obtaining the

tens digit and the operator of taking remainder for obtaining the ones digit.

Integer7. A two-digit integer is given. Find the sum and the product of its digits.

Integer8. A two-digit integer is given. Output an integer obtained from the given one

by exchange of its digits.

Integer9. A three-digit integer is given. Using one operator of integer division find

first digit of the given integer (a hundreds digit).

9

Integer10. A three-digit integer is given. Output its last digit (a ones digit) and then

its middle digit (a tens digit).

Integer11. A three-digit integer is given. Find the sum and the product of its digits.

Integer12. A three-digit integer is given. Output an integer obtained from the given

one by reading it from right to left.

Integer13. A three-digit integer is given. Output an integer obtained from the given

one by moving its left digit to the right side.

Integer14. A three-digit integer is given. Output an integer obtained from the given

one by moving its right digit to the left side.

Integer15. A three-digit integer is given. Output an integer obtained from the given

one by exchange a tens digit and a hundreds digit (for example, 123 will be

changed to 213).

Integer16. A three-digit integer is given. Output an integer obtained from the given

one by exchange a ones digit and a tens digit (for example, 123 will be

changed to 132).

Integer17. An integer greater than 999 is given. Using one operator of integer

division and one operator of taking the remainder find a hundreds digit of the

given integer.

Integer18. An integer greater than 999 is given. Using one operator of integer

division and one operator of taking the remainder find a thousands digit of the

given integer.

Integer19. From the beginning of the day N seconds have passed (N is integer). Find

an amount of full minutes passed from the beginning of the day.

Integer20. From the beginning of the day N seconds have passed (N is integer). Find

an amount of full hours passed from the beginning of the day.

Integer21. From the beginning of the day N seconds have passed (N is integer). Find

an amount of seconds passed from the beginning of the last minute.

Integer22. From the beginning of the day N seconds have passed (N is integer). Find

an amount of seconds passed from the beginning of the last hour.

Integer23. From the beginning of the day N seconds have passed (N is integer). Find

an amount of full minutes passed from the beginning of the last hour.

Integer24. Days of week are numbered as: 0 — Sunday, 1 — Monday, 2 —

Tuesday, …, 6 — Saturday. An integer K in the range 1 to 365 is given. Find

the number of day of week for K-th day of year provided that in this year

January 1 was Monday.

Integer25. Days of week are numbered as: 0 — Sunday, 1 — Monday, 2 —

Tuesday, …, 6 — Saturday. An integer K in the range 1 to 365 is given. Find

the number of day of week for K-th day of year provided that in this year

January 1 was Thursday.

Integer26. Days of week are numbered as: 1 — Monday, 2 — Tuesday, …, 6 —

Saturday, 7 — Sunday. An integer K in the range 1 to 365 is given. Find the

10

number of day of week for K-th day of year provided that in this year

January 1 was Tuesday.

Integer27. Days of week are numbered as: 1 — Monday, 2 — Tuesday, …, 6 —

Saturday, 7 — Sunday. An integer K in the range 1 to 365 is given. Find the

number of day of week for K-th day of year provided that in this year

January 1 was Saturday.

Integer28. Days of week are numbered as: 1 — Monday, 2 — Tuesday, …, 6 —

Saturday, 7 — Sunday. An integer K in the range 1 to 365 and an integer N in

the range 1 to 7 are given. Find the number of day of week for K-th day of year

provided that in this year January 1 was N-th day of week.

Integer29. Three positive integers A, B, C are given. A rectangle of the size A × B

contains the greatest possible amount of inside squares with the side length C

(without overlaps). Find the amount of squares placed on the rectangle and the

area of unused part of the rectangle.

Integer30. Given a year (as a positive integer), find the respective number of the

century. Note that, for example, 20th century began with the year 1901.

3. Logical expressions

All tasks in this group require determining the proposition as True or False. All

numbers with fixed amount of digits (for example, two-digit number, three-digit

number and so on) are assumed to be positive integers.

Boolean1. Given integer A, verify the following proposition: ―The number A is

positive‖.

Boolean2. Given integer A, verify the following proposition: ―The number A is

odd‖.

Boolean3. Given integer A, verify the following proposition: ―The number A is

even‖.

Boolean4. Given two integers A and B, verify the following proposition: ―The

inequalities A > 2 and B ≤ 3 both are fulfilled‖.

Boolean5. Given two integers A and B, verify the following proposition: ―The

inequality A ≥ 0 is fulfilled or the inequality B < −2 is fulfilled‖.

Boolean6. Given three integers A, B, C, verify the following proposition: ―The

double inequality A < B < C is fulfilled‖.

Boolean7. Given three integers A, B, C, verify the following proposition: ―The

number B is between A and C‖.

Boolean8. Given two integers A and B, verify the following proposition: ―Each of

the numbers A and B is odd‖.

Boolean9. Given two integers A and B, verify the following proposition: ―At least

one of the numbers A and B is odd‖.

11

Boolean10. Given two integers A and B, verify the following proposition: ―Exactly

one of the numbers A and B is odd‖.

Boolean11. Given two integers A and B, verify the following proposition: ―The

numbers A and B have equal parity‖.

Boolean12. Given three integers A, B, C, verify the following proposition: ―Each of

the numbers A, B, C is positive‖.

Boolean13. Given three integers A, B, C, verify the following proposition: ―At least

one of the numbers A, B, C is positive‖.

Boolean14. Given three integers A, B, C, verify the following proposition: ―Exactly

one of the numbers A, B, C is positive‖.

Boolean15. Given three integers A, B, C, verify the following proposition: ―Exactly

two of the numbers A, B, C are positive‖.

Boolean16. Given a positive integer, verify the following proposition: ―The integer

is a two-digit even number‖.

Boolean17. Given a positive integer, verify the following proposition: ―The integer

is a three-digit odd number‖.

Boolean18. Verify the following proposition: ―Among three given integers there is

at least one pair of equal ones‖.

Boolean19. Verify the following proposition: ―Among three given integers there is

at least one pair of opposite ones‖.

Boolean20. Given a three-digit integer, verify the following proposition: ―All digits

of the number are different‖.

Boolean21. Given a three-digit integer, verify the following proposition: ―All digits

of the number are in ascending order‖.

Boolean22. Given a three-digit integer, verify the following proposition: ―All digits

of the number are in ascending or descending order‖.

Boolean23. Given a four-digit integer, verify the following proposition: ―The

number is read equally both from left to right and from right to left‖.

Boolean24. Three real numbers A, B, C are given (A is not equal to 0). By means of

a discriminant D = B
2
 − 4·A·C, verify the following proposition: ―The

quadratic equation A·x
2
 + B·x + C = 0 has real roots‖.

Boolean25. Given two real numbers x, y, verify the following proposition: ―The

point with coordinates (x, y) is in the second coordinate quarter‖.

Boolean26. Given two real numbers x, y, verify the following proposition: ―The

point with coordinates (x, y) is in the fourth coordinate quarter‖.

Boolean27. Given two real numbers x, y, verify the following proposition: ―The

point with coordinates (x, y) is in the second or third coordinate quarter‖.

Boolean28. Given two real numbers x, y, verify the following proposition: ―The

point with coordinates (x, y) is in the first or third coordinate quarter‖.

12

Boolean29. Given real numbers x, y, x1, y1, x2, y2, verify the following proposition:

―The point (x, y) is inside of the rectangle whose left top vertex is (x1, y1), right

bottom vertex is (x2, y2), and sides are parallel to coordinate axes‖.

Boolean30. Given three integers a, b, c that are the sides of a triangle, verify the

following proposition: ―The triangle with sides a, b, c is equilateral‖.

Boolean31. Given three integers a, b, c that are the sides of a triangle, verify the

following proposition: ―The triangle with sides a, b, c is isosceles‖.

Boolean32. Given three integers a, b, c that are the sides of a triangle, verify the

following proposition: ―The triangle with sides a, b, c is a right triangle‖.

Boolean33. Given three integers a, b, c, verify the following proposition: ―A triangle

with the sides a, b, c exists‖.

Boolean34. Given coordinates x, y of a chessboard square (as integers in the range 1

to 8), verify the following proposition: ―The chessboard square (x, y) is white‖.

Note that the left bottom square (1, 1) is black.

Boolean35. Given coordinates x1, y1, x2, y2 of two chessboard squares (as integers in

the range 1 to 8), verify the following proposition: ―Both of the given

chessboard squares have the same color‖.

Boolean36. Given coordinates x1, y1, x2, y2 of two chessboard squares (as integers in

the range 1 to 8), verify the following proposition: ―A rook can move from one

square to another during one turn‖.

Boolean37. Given coordinates x1, y1, x2, y2 of two chessboard squares (as integers in

the range 1 to 8), verify the following proposition: ―A king can move from one

square to another during one turn‖.

Boolean38. Given coordinates x1, y1, x2, y2 of two chessboard squares (as integers in

the range 1 to 8), verify the following proposition: ―A bishop can move from

one square to another during one turn‖.

Boolean39. Given coordinates x1, y1, x2, y2 of two chessboard squares (as integers in

the range 1 to 8), verify the following proposition: ―A queen can move from

one square to another during one turn‖.

Boolean40. Given coordinates x1, y1, x2, y2 of two chessboard squares (as integers in

the range 1 to 8), verify the following proposition: ―A knight can move from

one square to another during one turn‖.

4. Conditional statement

If1. An integer is given. If the integer is positive then increase it by 1, otherwise do

not change it. Output the obtained integer.

If2. An integer is given. If the integer is positive then increase it by 1, otherwise

decrease it by 2. Output the obtained integer.

13

If3. An integer is given. If the integer is positive then increase it by 1, if the integer is

negative then decrease it by 2, if the integer equals 0 then change it to 10.

Output the obtained integer.

If4. Three integers are given. Find the amount of positive integers in the input data.

If5. Three integers are given. Find the amount of positive and amount of negative

integers in the input data.

If6. Given two real numbers, output the larger value of them.

If7. Given two real numbers, output the order number of the smaller of them.

If8. Given two real numbers, output the larger value and then the smaller value of

them.

If9. The values of two real variables A and B are given. Redistribute the values so

that A and B have the smaller and the larger value respectively. Output the new

values of the variables A and B.

If10. The values of two integer variables A and B are given. If the values are not

equal then assign the sum of given values to each variable, otherwise assign

zero value to each variable. Output the new values of the variables A and B.

If11. The values of two integer variables A and B are given. If the values are not

equal then assign the larger value to each variable, otherwise assign zero value

to each variable. Output the new values of the variables A and B.

If12. Given three real numbers, output the minimal value of them.

If13. Given three real numbers, output the value between the minimum and the

maximum.

If14. Given three real numbers, output the minimal value and then the maximal value.

If15. Given three real numbers, output the sum of two largest values.

If16. The values of three real variables A, B, C are given. If the values are in

ascending order then double them, otherwise replace the value of each variable

by its opposite value. Output the new values of the variables A, B, C.

If17. The values of three real variables A, B, C are given. If the values are in

ascending or descending order then double them, otherwise replace the value

of each variable by its opposite value. Output the new values of the

variables A, B, C.

If18. Three integers are given. One of them differs from two other equal integers.

Output the order number of the integer that differs from the others.

If19. Four integers are given. One of them differs from three other equal integers.

Output the order number of the integer that differs from the others.

If20. Three points A, B, C on the real axis are given. Determine whether B or C is

closer to A. Output the nearest point and its distance from A.

If21. Integer coordinates of a point in the coordinate plane are given. If the point

coincides with the origin of coordinates then output 0, otherwise if the point

14

lies on the x-axis or y-axis then output 1 or 2 respectively. If the point does not

lie on the coordinate axes then output 3.

If22. Given coordinates of a point that does not lie on the coordinate axes, find the

number of a coordinate quarter containing the point.

If23. Given integer coordinates of three vertices of a rectangle whose sides are

parallel to coordinate axes, find the coordinates of the fourth vertex of the

rectangle.

If24. Given a real independent variable x, find the value of a real function f defined

as:

f(x) = 2·sin(x), if x > 0,

 6 − x, if x ≤ 0.

If25. Given an integer independent variable x, find the value of an integer function f

defined as:

f(x) = 2·x, if x < −2 or x > 2,

 −3·x otherwise.

If26. Given a real independent variable x, find the value of a real function f defined

as:

 −x, if x ≤ 0,

f(x) = x
2
, if 0 < x < 2,

 4, if x ≥ 2.

If27. Given a real independent variable x, find the value of an integer function f

defined as:

 0, if x < 0,

f(x) = 1, if x belongs to [0, 1), [2, 3), …,

 −1, if x belongs to [1, 2), [3, 4), … .

If28. Given a number of year (as a positive integer), find the amount of days in the

year. Note that the length of year is 365 days for an ordinary year and 366 days

for a leap year. A leap year is every year whose number is divisible by 4,

as 1980, except centenary years that are not divisible by 400 (for example,

1300 and 1900 are ordinary years, 1200 and 2000 are leap years).

If29. Given an integer, output its description string as: ―negative even number‖, ―zero

number‖, ―positive odd number‖, etc.

If30. An integer in the range 1 to 999 is given. Output its description string as: ―two-

digit even number‖, ―three-digit odd number‖, etc.

5. Selection statement

Case1. An integer in the range 1 to 7 is given. Output the name of the respective day

of week: 1 — ―Monday‖, 2 — ―Tuesday‖, …, 7 — ―Sunday‖.

15

Case2. Given an integer K, output the respective examination mark: 1 — ―bad‖, 2 —

―unsatisfactory‖, 3 — ―mediocre‖, 4 — ―good‖, 5 — ―excellent‖. If K is not in

the range 1 to 5 then output string ―error‖.

Case3. A number of month is given (as an integer in the range 1 to 12): 1 —

January, 2 — February, etc. Output the name of the respective season:

―Winter‖, ―Spring‖, ―Summer‖, ―Autumn‖.

Case4. A number of month is given (as an integer in the range 1 to 12): 1 —

January, 2 — February, etc. Output the amount of days in the month for a non-

leap year.

Case5. The arithmetic operations are numbered as: 1 — addition, 2 — subtraction,

3 — multiplication, 4 — division. The order number N of an operation and two

real numbers A and B are given (N is an integer in the range 1 to 4, В is not

equal to 0). Perform the operation with the operands A and B and output the

result.

Case6. The units of length are numbered as: 1 — decimeter, 2 — kilometer, 3 —

meter, 4 — millimeter, 5 — centimeter. The order number N of a unit of length

and also the length L of a segment are given (N is an integer in the range 1

to 5, L is a real number). Output the length of the segment in meters.

Case7. The units of weight are numbered as: 1 — kilogram, 2 — milligram, 3 —

gram, 4 — ton, 5 — centner (= 100 kilograms). The order number N of a unit

of weight and the mass M of a solid are given (N is an integer in the range 1

to 5, M is a real number). Output the mass of the solid in kilograms.

Case8. Given two integers D (day) and M (month) representing a correct date of a

non-leap year, output values D and M for the previous date.

Case9. Given two integers D (day) and M (month) representing a correct date of a

non-leap year, output values D and M for the next date.

Case10. A robot can move in four directions (―N‖ — north, ―W‖ — west, ―S‖ —

south, ―E‖ — east) and perform three digital instructions: 0 — ―move in the

former direction‖, 1 — ―turn left‖, −1 — ―turn right‖. A symbol C (an initial

direction of the robot) and an integer N (an instruction) are given. Output the

direction of the robot (as symbol) after performing the instruction.

Case11. A locator can be focused on the directions ―N‖ (north), ―W‖ (west), ―S‖

(south), ―E‖ (east) and perform three digital instructions: 1 — ―turn left‖,

−1 — ―turn right‖, 2 — ―turn on 180°‖). A symbol C (an initial direction of the

locator) and two integers N1 and N2 (instructions) are given. Output the

direction of the locator (as symbol) after performing the instructions.

Case12. Elements of a circle are numbered as: 1 — radius R, 2 — diameter D = 2·R,

3 — length L = 2·π·R of the circumference, 4 — area S = π·R
2
. The order

number of one element and its value (as a real number) are given. Output

values of other elements in the same order. Use 3.14 for a value of π.

Case13. Elements of a right isosceles triangle are numbered as: 1 — leg a, 2 —

hypotenuse c = a·(2)
1/2

, 3 — altitude h drawn onto hypotenuse (h = c/2), 4 —

16

area S = c·h/2. The order number of one element and its value (as a real

number) are given. Output values of other elements in the same order.

Case14. Elements of an equilateral triangle are numbered as: 1 — side a, 2 —

radius R1 of inscribed circle (R1 = a·(3)
1/2

/6), 3 — radius R2 of circumscribed

circle (R2 = 2·R1), 4 — area S = a
2
·(3)

1/2
/4. The order number of one element

and its value (as a real number) are given. Output values of other elements in

the same order.

Case15. The suits of playing cards are numbered as: 1 — spades, 2 — clubs, 3 —

diamonds, 4 — hearts. Card values ―Jack‖, ―Queen‖, ―King‖, ―Ace‖ are

numbered as 11, 12, 13, 14 respectively. A card value N (as an integer in the

range 6 to 14) and a suit M (as an integer in the range 1 to 4) are given. Output

the card description as: ―six of diamonds‖, ―queen of spades‖, etc.

Case16. Given an age in years (as an integer in the range 20 to 69), output its

alphabetic equivalent as: ―twenty years‖, ―thirty-two years‖, ―forty-one years‖,

etc.

Case17. Given an order number of some training task (as an integer in the range 10

to 40), output its alphabetic equivalent as: ―the eighteenth task‖, ―the twenty-

third task‖, ―the thirtieth task‖, etc.

Case18. Given an integer in the range 100 to 999, output its alphabetic equivalent.

For example, 100 — ―one hundred‖, 256 — ―two hundred and fifty-six‖,

814 — ―eight hundred and fourteen‖, 901 — ―nine hundred and one‖.

Case19. One of the Asian calendars uses 60-years periods divided into 12-years

cycles, which are associated with a color: green, red, yellow, white, black.

Each year in a cycle is connected with some animal: rat, cow, tiger, hare,

dragon, snake, horse, sheep, monkey, hen, dog, pig. Given some year (as

positive integer), output its name provided that 1984 is ―The Green Rat`s

year‖.

Case20. Given two integers D (day) and M (month) that represent a correct date,

output the zodiacal name corresponding to this date: ―Aquarius‖ 20.1–18.2,

―Pisces‖ 19.2–20.3, ―Aries‖ 21.3–19.4, ―Taurus‖ 20.4–20.5, ―Gemini‖ 21.5–

21.6, ―Cancer‖ 22.6–22.7, ―Leo‖ 23.7–22.8, ―Virgo‖ 23.8–22.9, ―Libra‖ 23.9–

22.10, ―Scorpio‖ 23.10–22.11, ―Sagittarius‖ 23.11–21.12, ―Capricorn‖ 22.12–

19.1.

6. Loop with the parameter

For1. Given integers K and N (N > 0), output the number K N times.

For2. Given two integers A and B (A < B), output in ascending order all integers in

the range A to B (including A and B). Also output the amount N of these

integers.

17

For3. Given two integers A and B (A < B), output in descending order all integers in

the range A to B (excluding A and B). Also output the amount N of these

integers.

For4. Given the price of 1 kg of sweets (as a real number), output the cost of 1, 2, …,

10 kg of these sweets.

For5. Given the price of 1 kg of sweets (as a real number), output the cost of 0.1,

0.2, …, 1 kg of these sweets.

For6. Given the price of 1 kg of sweets (as a real number), output the cost of 1.2,

1.4, …, 2 kg of these sweets.

For7. Given two integers A and B (A < B), find the sum of all integers in the range A

to B inclusive.

For8. Given two integers A and B (A < B), find the product of all integers in the

range A to B inclusive.

For9. Given two integers A and B (A < B), find the sum of squares of all integers in

the range A to B inclusive.

For10. Given an integer N (> 0), find the value of a following sum (as a real

number):

1 + 1/2 + 1/3 + … + 1/N.

For11. Given an integer N (> 0), find the value of a following sum (as an integer):

N
2
 + (N + 1)

2
 + (N + 2)

2
 + … + (2·N)

2
.

For12. Given an integer N (> 0), find the value of a following product of N factors:

1.1 · 1.2 · 1.3 · … .

For13. Given an integer N (> 0), find the value of the following expression of

N terms with alternating signs:

1.1 − 1.2 + 1.3 − … .

Do not use conditional statements.

For14. Given an integer N (> 0), compute N
2
 by means of the formula

N
2
 = 1 + 3 + 5 + … + (2·N − 1).

Output the value of the sum after addition of each term. As a result, squares of

all integers in the range 1 to N will be output.

For15. Given a real number A and an integer N (> 0), find A raised to the power N

(i. e., the product of N values of A):

A
N
 = A·A· … ·A.

For16. A real number A and an integer N (> 0) are given. Using one loop-statement

compute and output powers A
K
 for all integer exponents K in the range 1 to N.

For17. A real number A and an integer N (> 0) are given. Using one loop-statement

compute the sum

1 + A + A
2
 + A

3
 + … + A

N
.

For18. A real number A and an integer N (> 0) are given. Using one loop-statement

compute the expression

1 − A + A
2
 − A

3
 + … + (−1)

N
·A

N
.

18

Do not use conditional statements.

For19. Given an integer N (> 0), find the value of a following product:

N! = 1·2·…·N

(N–factorial). To avoid the integer overflow, compute the product using a real

variable and output the result as a real number.

For20. An integer N (> 0) is given. Using one loop-statement compute the sum

1! + 2! + 3! + … + N!,

where N! (N–factorial) is the product of all integers in the range 1 to N:

 N! = 1·2·…·N. To avoid the integer overflow, compute the sum using real

variables and output the result as a real number.

For21. An integer N (> 0) is given. Using one loop-statement compute the sum

1 + 1/(1!) + 1/(2!) + 1/(3!) + … + 1/(N!),

where N! (N–factorial) is the product of all integers in the range 1 to N:

 N! = 1·2·…·N. The result is an approximate value of the constant e = exp(1).

For22. A real number X and an integer N (> 0) are given. Compute the expression

1 + X + X
2
/(2!) + … + X

N
/(N!)

(N! = 1·2·…·N). The result is an approximate value of exp(X).

For23. A real number X and an integer N (> 0) are given. Compute the expression

X − X
3
/(3!) + X

5
/(5!) − … + (−1)

N
·X

2·N+1
/((2·N+1)!)

(N! = 1·2·…·N). The result is an approximate value of sin(X).

For24. A real number X and an integer N (> 0) are given. Compute the expression

1 − X
2
/(2!) + X

4
/(4!) − … + (−1)

N
·X

2·N
/((2·N)!)

(N! = 1·2·…·N). The result is an approximate value of cos(X).

For25. A real number X (|X| < 1) and an integer N (> 0) are given. Compute the

expression

X − X
2
/2 + X

3
/3 − … + (−1)

N−1
·X

N
/N.

The result is an approximate value of ln(1 + X).

For26. A real number X (|X| < 1) and an integer N (> 0) are given. Compute the

expression

X − X
3
/3 + X

5
/5 − … + (−1)

N
·X

2·N+1
/(2·N+1).

The result is an approximate value of atan(X).

For27. A real number X (|X| < 1) and an integer N (> 0) are given. Compute the

expression

X + 1·X
3
/(2·3) + 1·3·X

5
/(2·4·5) + … +

+ 1·3·…·(2·N−1)·X
2·N+1

/(2·4·…·(2·N)·(2·N+1)).

The result is an approximate value of asin(X).

For28. A real number X (|X| < 1) and an integer N (> 0) are given. Compute the

expression

1 + X/2 − 1·X
2
/(2·4) + 1·3·X

3
/(2·4·6) − … +

+ (−1)
N−1

·1·3·…·(2·N−3)·X
N
/(2·4·…·(2·N)).

The result is an approximate value of the square root of 1 + X.

19

For29. An integer N (> 1) and two points A, B (A < B) on the real axis are given. The

segment [A, B] is divided into N sub-segments of equal length. Output the

length H of each sub-segment and then output the sequence of points

A, A + H, A + 2·H, A + 3·H, …, B,

which forms a partition of the segment [A, B].

For30. An integer N (> 1) and two points A, B (A < B) on the real axis are given. The

segment [A, B] is divided into N sub-segments of equal length. Output the

length H of each sub-segment and then output the values of a function

F(X) = 1 − sin(X) at points dividing the segment [A, B]:

F(A), F(A + H), F(A + 2·H), …, F(B).

For31. An integer N (> 0) is given. A sequence of real numbers AK is defined as:

A0 = 2, AK = 2 + 1/AK−1, K = 1, 2, … .

Output terms A1, A2, …, AN of the sequence.

For32. An integer N (> 0) is given. A sequence of real numbers AK is defined as:

A0 = 1, AK = (AK−1 + 1)/K, K = 1, 2, … .

Output terms A1, A2, …, AN of the sequence.

For33. An integer N (> 0) is given. An integer-valued sequence of the Fibonacci

numbers FK is defined as:

F1 = 1, F2 = 1, FK = FK−2 + FK−1, K = 3, 4, … .

Output terms F1, F2, …, FN of the sequence.

For34. An integer N (> 1) is given. A sequence of real numbers AK is defined as:

A1 = 1, A2 = 2, AK = (AK−2 + 2·AK−1)/3, K = 3, 4, … .

Output terms A1, A2, …, AN of the sequence.

For35. An integer N (> 2) is given. A sequence of integers AK is defined as:

A1 = 1, A2 = 2, A3 = 3, AK = AK−1 + AK−2 − 2·AK−3, K = 4, 5, … .

Output terms A1, A2, …, AN of the sequence.

Nested loops

For36. Given positive integers N and K, find the sum

1
K
 + 2

K
 + … + N

K
.

To avoid the integer overflow, compute the sum using real variables and

output the result as a real number.

For37. Given an integer N (> 0), find the sum

1
1
 + 2

2
 + … + N

N
.

To avoid the integer overflow, compute the sum using real variables and

output the result as a real number.

For38. Given an integer N (> 0), find the sum

1
N
 + 2

N−1
 + … + N

1
.

To avoid the integer overflow, compute the sum using real variables and

output the result as a real number.

20

For39. Positive integers A and B (A < B) are given. Output all integers in the range A

to B, with an integer of a value K being output K times (for example, the

number 3 must be output 3 times).

For40. Integers A and B (A < B) are given. Output all integers in the range A to B,

with the number A being output once, the number A + 1 being output twice,

and so on.

7. Loop with the condition

While1. Two positive real numbers A and B (A > B) are given. A segment of length A

contains the greatest possible amount of segments of length B (without

overlaps). Not using multiplication and division, find the length of unused part

of the segment A.

While2. Two positive real numbers A and B (A > B) are given. A segment of length A

contains the greatest possible amount of segments of length B (without

overlaps). Not using multiplication and division, find the amount of

segments B, which are placed on the segment A.

While3. Two positive integers N and K are given. Using addition and subtraction

only, find a quotient of the integer division N on K and also a remainder after

this division.

While4. An integer N (> 0) is given. If it equals 3 raised to some integer power then

output True, otherwise output False.

While5. Given an integer N (> 0) that equals 2 raised to some integer power: N = 2
K
,

find the exponent K of the power.

While6. Given an integer N (> 0), compute the double factorial of N:

N!! = N·(N−2)·(N−4)·…,

where the last factor equals 2 if N is an even number, and 1 otherwise. To

avoid the integer overflow, compute the double factorial using a real variable

and output the result as a real number.

While7. Given an integer N (> 0), find the smallest positive integer K such that its

square is greater than N: K
2
 > N. Do not use the operation of extracting a root.

While8. Given an integer N (> 0), find the largest integer K such that its square is not

greater than N: K
2
 ≤ N. Do not use the operation of extracting a root.

While9. Given an integer N (> 1), find the smallest integer K such that the inequality

3
K
 > N is fulfilled.

While10. Given an integer N (> 1), find the largest integer K such that the inequality

3
K
 < N is fulfilled.

While11. An integer N (> 1) is given. Find the smallest integer K such that the sum

1 + 2 + … + K is greater than or equal to N. Output K and the corresponding

sum.

21

While12. An integer N (> 1) is given. Find the largest integer K such that the sum

1 + 2 + … + K is less than or equal to N. Output K and the corresponding sum.

While13. A real number A (> 1) is given. Find the smallest integer K such that the

sum 1 + 1/2 + … + 1/K is greater than A. Output K and the corresponding sum.

While14. A real number A (> 1) is given. Find the largest integer K such that the sum

1 + 1/2 + … + 1/K is less than A. Output K and the corresponding sum.

While15. A principal of 1000 euro is invested at a rate of P percent compounded

annually. A real number P is given, 0 < P < 25. Find, how many years K it will

take for an investment to exceed 1100 euro. Output K (as an integer) and the

compound amount S of the principal at the end of K years (as a real number).

While16. The skier began trainings having run 10 km. Each next day he increased the

run distance by P percent from the distance of the last day. A real number P is

given, 0 < P < 50). Find, how many days K it will take for a total run to exceed

200 km. Output K (as an integer) and the total run S (as a real number).

While17. Given an integer N (> 0), output all digits of the number N starting from the

right digit (a ones digit). Use the operators of integer division and taking the

remainder after integer division.

While18. Given an integer N (> 0), find the amount and the sum of its digits. Use the

operators of integer division and taking the remainder after integer division.

While19. An integer N (> 0) is given. Output an integer obtained from the given one

by reading it from right to left. Use the operators of integer division and taking

the remainder after integer division.

While20. An integer N (> 0) is given. Determine whether its decimal representation

contains a digit ‖2‖ or not, and output True or False respectively. Use the

operators of integer division and taking the remainder after integer division.

While21. An integer N (> 0) is given. Determine whether its decimal representation

contains odd digits or not, and output True or False respectively. Use the

operators of integer division and taking the remainder after integer division.

While22. An integer N (> 1) is given. If it is a prime number, i. e., it has not positive

divisors except 1 and itself, then output True, otherwise output False.

While23. Two positive integers A and B are given. Find their greatest common

divisor (GCD) using the Euclidean algorithm:

GCD(A, B) = GCD(B, A mod B), if B ≠ 0; GCD(A, 0) = A,

where ―mod‖ denotes the operator of taking the remainder after integer

division.

While24. An integer N (> 1) is given. An integer-valued sequence of the Fibonacci

numbers FK is defined as:

F1 = 1, F2 = 1, FK = FK−2 + FK−1, K = 3, 4, … .

Determine whether N is a Fibonacci number or not, and output True or False

respectively.

22

While25. Given an integer N (> 1), find the first Fibonacci number greater than N

(see the Fibonacci numbers definition in While24).

While26. Given an integer N (> 1) that is a Fibonacci number: N = FK, output

previous and next Fibonacci numbers: FK−1 and FK+1 (see the Fibonacci

numbers definition in While24).

While27. Given an integer N (> 1) that is a Fibonacci number: N = FK, find its order

number K (see the Fibonacci numbers definition in While24).

While28. A real number ε (> 0) is given. A sequence of real numbers AK is defined

as:

A1 = 2, AK = 2 + 1/AK−1, K = 2, 3, … .

Find the first index K such that the inequality |AK − AK−1| < ε is fulfilled. Output

the index K and the terms AK−1 and AK.

While29. A real number ε (> 0) is given. A sequence of real numbers AK is defined

as:

A1 = 1, A2 = 2, AK = (AK−2 + 2·AK−1)/3, K = 3, 4, … .

Find the first index K such that the inequality |AK − AK−1| < ε is fulfilled. Output

the index K and the terms AK−1 and AK.

While30. Three positive real numbers A, B, C are given. A rectangle of size A × B

contains the greatest possible amount of squares with side C (without

overlaps). Find the amount of squares placed on the rectangle. Do not use the

operators of multiplication and division.

8. Procedures and functions

8.1. Procedures with numeric parameters

Proc1. Write a procedure PowerA3(A, B) that computes the third degree of a real

number A and assigns the result to a real variable B (A is an input parameter,

B is an output parameter). Using this procedure, find the third degree of five

given real numbers.

Proc2. Write a procedure PowerA234(A, B, C, D) that computes the second, the

third, and the fourth degrees of a real number A and assigns the results to real

variables B, C, and D respectively (A is an input parameter, B, C, D are output

parameters). Using this procedure, find the second, the third, and the fourth

degrees of five given real numbers.

Proc3. Write a procedure Mean(X, Y, AMean, GMean) that computes the

arithmetical mean AMean = (X+Y)/2 and the geometrical mean

GMean = (X·Y)
1/2

 of two positive numbers X and Y (X and Y are input

parameters, AMean and GMean are output parameters; all parameters are the

real-valued ones). Using this procedure, find the arithmetical mean and the

geometrical mean of pairs (A, B), (A, C), (A, D) provided that real

numbers A, B, C, D are given.

23

Proc4. Write a procedure TrianglePS(a, P, S) that computes the perimeter P = 3·a

and the area S = a
2
·(3)

1/2
/4 of an equilateral triangle with the side a (a is an

input parameter, P and S are output parameters, all parameters are the real-

valued ones). Using this procedure, find the perimeters and the areas of three

triangles with the given lengths of the sides.

Proc5. Write a procedure RectPS(x1, y1, x2, y2, P, S) that computes the perimeter P

and the area S of a rectangle whose opposite vertices have coordinates (x1, y1)

and (x2, y2) and sides are parallel to coordinate axes (x1, y1, x2, y2 are input

parameters, P and S are output parameters, all parameters are the real-valued

ones). Using this procedure, find the perimeters and the areas of three

rectangles with the given opposite vertices.

Proc6. Write a procedure DigitCountSum(K, C, S) that finds the amount C of digits

in the decimal representation of a positive integer K and also the sum S of its

digits (K is an input parameter, C and S are output parameters, all parameters

are the integer ones). Using this procedure, find the amount and the sum of

digits for each of five given integers.

Proc7. Write a procedure InvDigits(K) that inverts the order of digits of a positive

integer K (K is an input and output integer parameter). Using this procedure,

invert the order of digits for each of five given integers.

Proc8. Write a procedure AddRightDigit(D, K) that adds a digit D to the right side of

the decimal representation of a positive integer K (D is an input integer

parameter with the value in the range 0 to 9, K is an input and output integer

parameter). Having input an integer K and two one-digit numbers D1, D2 and

using two calls of this procedure, sequentially add the given digits D1, D2 to

the right side of the given K and output the result of each adding.

Proc9. Write a procedure AddLeftDigit(D, K) that adds a digit D to the left side of

the decimal representation of a positive integer K (D is an input integer

parameter with the value in the range 0 to 9, K is an input and output integer

parameter). Having input an integer K and two one-digit numbers D1, D2 and

using two calls of this procedure, sequentially add the given digits D1, D2 to

the left side of the given K and output the result of each adding.

Proc10. Write a procedure Swap(X, Y) that exchanges the values of variables X

and Y (X and Y are input and output real-valued parameters). Having input

integers A, B, C, D and using three calls of this procedure, sequentially

exchange the values of the pairs A and B, C and D, B and C. Output the new

values of A, B, C, D.

Proc11. Write a procedure Minmax(X, Y) that exchanges, if necessary, the values of

two variables X and Y so that X ≤ Y (X and Y are input and output real-valued

parameters). Using four calls of this procedure, find the minimal value and the

maximal value among given real numbers A, B, C, D.

Proc12. Write a procedure SortInc3(A, B, C) that interchanges, if necessary, the

values of three variables A, B, C so that A ≤ B ≤ C (A, B, C are input and output

24

real-valued parameters). Using this procedure, sort each of two given triples of

real numbers (A1, B1, C1) and (A2, B2, C2) in ascending order.

Proc13. Write a procedure SortDec3(A, B, C) that interchanges, if necessary, the

values of three variables A, B, C so that A ≥ B ≥ C (A, B, C are input and output

real-valued parameters). Using this procedure, sort each of two given triples of

real numbers (A1, B1, C1) and (A2, B2, C2) in descending order.

Proc14. Write a procedure ShiftRight3(A, B, C) that performs a right cyclic shift by

assigning the initial values of A, B, C to variables B, C, A respectively (A, B, C

are input and output real-valued parameters). Using this procedure, perform

the right cyclic shift for each of two given triples of real numbers: (A1, B1, C1)

and (A2, B2, C2).

Proc15. Write a procedure ShiftLeft3(A, B, C) that performs a left cyclic shift by

assigning the initial values of A, B, C to variables C, A, B respectively (A, B, C

are input and output real-valued parameters). Using this procedure, perform

the left cyclic shift for each of two given triples of real numbers: (A1, B1, C1)

and (A2, B2, C2).

8.2. Functions with numeric parameters

Proc16. Write an integer function Sign(X) that returns the following value:

−1, if X < 0; 0, if X = 0; 1, if X > 0

(X is a real-valued parameter). Using this function, evaluate an expression

Sign(A) + Sign(B) for given real numbers A and B.

Proc17. Write an integer function RootCount(A, B, C) that returns the amount of

roots of the quadratic equation A·x
2
 + B·x + C = 0 (A, B, C are real-valued

parameters, A ≠ 0). Using this function, find the amount of roots for each of

three quadratic equations with given coefficients. Note that the amount of roots

is determined by the value of a discriminant:

D = B
2
 − 4·A·C.

Proc18. Write a real-valued function CircleS(R) that returns the area of a circle of

radius R (R is a real number). Using this function, find the areas of three circles

of given radiuses. Note that the area of a circle of radius R can be found by

formula S = π·R
2
. Use 3.14 for a value of π.

Proc19. Write a real-valued function RingS(R1, R2) that returns the area of a ring

bounded by a concentric circles of radiuses R1 and R2 (R1 and R2 are real

numbers, R1 > R2). Using this function, find the areas of three rings with given

outer and inner radiuses. Note that the area of a circle of radius R can be found

by formula S = π·R
2
. Use 3.14 for a value of π.

Proc20. Write a real-valued function TriangleP(a, h) that returns the perimeter of an

isosceles triangle with given base a and altitude h (a and h are real numbers).

Using this function, find the perimeters of three triangles with given bases and

altitudes. Note that the leg b of an isosceles triangle can be found by the

Pythagorean theorem:

25

b
2
 = (a/2)

2
 + h

2
.

Proc21. Write an integer function SumRange(A, B) that returns a sum of all integers

in the range A to B inclusively (A and B are integers). In the case of A > B the

function returns 0. Using this function, find a sum of all integers in the range A

to B and in the range B to C provided that integers A, B, C are given.

Proc22. Write a real-valued function Calc(A, B, Op) that performs an arithmetic

operation over nonzero real numbers A and B and returns the result value. An

arithmetic operation is determined by integer parameter Op as follows: 1 —

subtraction, 2 — multiplication, 3 — division, and addition otherwise. Having

input real numbers A, B and integers N1, N2, N3 and using this function,

perform over given A, B three operations determined by given N1, N2, N3.

Output the result value of each operation.

Proc23. Write an integer function Quarter(x, y) that returns the number of a

coordinate quarter containing a point with nonzero real-valued coordinates

(x, y). Using this function, find the numbers of coordinate quarters containing

each of three points with given nonzero coordinates.

Proc24. Write a logical function Even(K) that returns True, if an integer parameter K

is an even number, and False otherwise. Using this function, find the amount

of even numbers in a given sequence of 10 integers.

Proc25. Write a logical function IsSquare(K) that returns True, if an positive integer

parameter K is a square of some integer, and False otherwise. Using this

function, find the amount of squares in a given sequence of 10 positive

integers.

Proc26. Write a logical function IsPower5(K) that returns True, if an positive integer

parameter K is equal to 5 raised to some integer power, and False otherwise.

Using this function, find the amount of powers of base 5 in a given sequence

of 10 positive integers.

Proc27. Write a logical function IsPowerN(K, N) that returns True, if an positive

integer parameter K is equal to N (> 1) raised to some integer power, and False

otherwise. Having input an integer N (> 1) and a sequence of 10 positive

integers and using this function, find the amount of powers of base N in the

given sequence.

Proc28. Write a logical function IsPrime(N) that returns True, if an integer

parameter N (> 1) is a prime number, and False otherwise. Using this function,

find the amount of prime numbers in a given sequence of 10 integers greater

than 1. Note that an integer (> 1) is called a prime number if it has not positive

divisors except 1 and itself.

Proc29. Write an integer function DigitCount(K) that returns the amount of digits in

the decimal representation of a positive integer K. Using this function, find the

amount of digits for each of five given positive integers.

Proc30. Write an integer function DigitN(K, N) that returns the N-th digit in the

decimal representation of a positive integer K provided that the digits are

26

numbered from right to left. If the amount of digits is less than N then the

function returns −1. Using this function, output sequentially 1st, 2nd, 3rd, 4th,

5th digit for each of five given positive integers K1, K2, …, K5.

Proc31. Write a logical function IsPalindrome(K) that returns True, if the decimal

representation of a positive parameter K is a palindrome (i. e., it is read equally

both from left to right and from right to left), and False otherwise. Using this

function, find the amount of palindromes in a given sequence of 10 positive

integers.

Proc32. Write a real-valued function DegToRad(D) that converts the angle value D

in degrees into the one in radians (D is a real number, 0 ≤ D < 360). Note that

180° = π radians and use 3.14 for a value of π. Using this function, convert five

given angles from degrees into radians.

Proc33. Write a real-valued function RadToDeg(R) that converts the angle value R

in radians into the one in degrees (R is a real number, 0 ≤ R < 2·π). Note that

180° = π radians and use 3.14 for a value of π. Using this function, convert five

given angles from radians into degrees.

Proc34. Write a real-valued function Fact(N) that returns a factorial of a positive

integer N: N! = 1·2·…·N (the real return type allows to avoid the integer

overflow during the calculation of the factorials for large values of the

parameter N). Using this function, find the factorials of five given integers.

Proc35. Write a real-valued function Fact2(N) that returns a double factorial N!!:

N!! = 1·3·5·…·N, if N is an odd number;

N!! = 2·4·6·…·N otherwise

(N is a positive integer; the real return type allows to avoid the integer

overflow during the calculation of the double factorials for large values of N).

Using this function, find the double factorials of five given integers.

Proc36. Write an integer function Fib(N) that returns the value of N-th term of the

sequence of the Fibonacci numbers. The Fibonacci numbers FK are defined as

follows:

F1 = 1, F2 = 1, FK = FK−2 + FK−1, K = 3, 4, … .

Using this function, find five Fibonacci numbers with given order numbers N1,

N2, …, N5.

8.3. Additional tasks

Proc37. Write a real-valued function Power1(A, B) that returns the power A
B

calculated by the formula A
B
 = exp(B·ln(A)) (A and B are real-valued

parameters). In the case of zero-valued or negative parameter A the function

returns 0. Having input real numbers P, A, B, C and using this function, find

the powers A
P
, B

P
, C

P
.

Proc38. Write a real-valued function Power2(A, N) that returns the power A
N

calculated by the following formulas:

27

A
0
 = 1;

A
N
 = A·A·…·A (N factors), if N > 0;

A
N
 = 1/(A·A·…·A) (|N| factors), if N < 0

(A is a real-valued parameter, N is an integer parameter). Having input a real

number A and integers K, L, M and using this function, find the powers A
K
, A

L
,

A
M

.

Proc39. Using the Power1 and Power2 functions (see Proc37 and Proc38), write a

real-valued function Power3(A, B) that returns the power A
B
 calculated as

follows (A and B are real-valued parameters): if B has a zero-valued fractional

part then the function Power2(A, N) is called (an integer variable N is equal to

B), otherwise the function Power1(A, B) is called. Having input real

numbers P, A, B, C and using the Power3 function, find the powers A
P
, B

P
, C

P
.

Proc40. Write a real-valued function Exp1(x, ε) (x and ε are real numbers, ε > 0) that

returns an approximate value of the function exp(x) defined as follows:

exp(x) = 1 + x + x
2
/(2!) + x

3
/(3!) + … + x

n
/(n!) + …

(n! = 1·2·…·n). Stop adding new terms to the sum when the value of the next

term will be less than ε. Using this function, find the approximate values of the

function exp(x) at a given point x for six given ε.

Proc41. Write a real-valued function Sin1(x, ε) (x and ε are real numbers, ε > 0) that

returns an approximate value of the function sin(x) defined as follows:

sin(x) = x − x
3
/(3!) + x

5
/(5!) − … + (−1)

n
·x

2·n+1
/((2·n+1)!) + … .

Stop adding new terms to the sum when the absolute value of the next term

will be less than ε. Using this function, find the approximate values of the

function sin(x) at a given point x for six given ε.

Proc42. Write a real-valued function Cos1(x, ε) (x and ε are real numbers, ε > 0) that

returns an approximate value of the function cos(x) defined as follows:

cos(x) = 1 − x
2
/(2!) + x

4
/(4!) − … + (−1)

n
·x

2·n
/((2·n)!) + … .

Stop adding new terms to the sum when the absolute value of the next term

will be less than ε. Using this function, find the approximate values of the

function cos(x) at a given point x for six given ε.

Proc43. Write a real-valued function Ln1(x, ε) (x and ε are real numbers, |x| < 1,

ε > 0) that returns an approximate value of the function ln(1 + x) defined as

follows:

ln(1 + x) = x − x
2
/2 + x

3
/3 − … + (−1)

n
·x

n+1
/(n+1) + … .

Stop adding new terms to the sum when the absolute value of the next term

will be less than ε. Using this function, find the approximate values of the

function ln(1 + x) at a given point x for six given ε.

Proc44. Write a real-valued function Atan1(x, ε) (x and ε are real numbers, |x| < 1,

ε > 0) that returns an approximate value of the function atan(x) defined as

follows:

atan(x) = x − x
3
/3 + x

5
/5 − … + (−1)

n
·x

2·n+1
/(2·n+1) + … .

28

Stop adding new terms to the sum when the absolute value of the next term

will be less than ε. Using this function, find the approximate values of the

function atan(x) at a given point x for six given ε.

Proc45. Write a real-valued function Power4(x, a, ε) (x, a, ε are real numbers, |x| < 1,

a, ε > 0) that returns an approximate value of the function (1 + x)
a
 defined as:

(1 + x)
a
 = 1 + a·x + a·(a−1)·x

2
/(2!) + … + a·(a−1)·…·(a−n+1)·x

n
/(n!) + … .

Stop adding new terms to the sum when the absolute value of the next term

will be less than ε. Using this function, find the approximate values of the

function (1 + x)
a
 at a given point x for a given exponent a and six given ε.

Proc46. Write an integer function GCD2(A, B) that returns the greatest common

divisor (GCD) of two positive integers A and B. Use the Euclidean algorithm:

GCD(A, B) = GCD(B, A mod B), if B ≠ 0; GCD(A, 0) = A,

where ―mod‖ denotes the operator of taking the remainder after integer

division. Using this function, find the greatest common divisor for each of

pairs (A, B), (A, C), (A, D) provided that integers A, B, C, D are given.

Proc47. Using the GCD2 function from the task Proc46, write a procedure Frac1(a,

b, p, q), that simplifies a fraction a/b to the irreducible form p/q (a and b are

input integer parameters, p and q are output integer parameters). The sign of a

resulting fraction p/q is assigned to its numerator, so q > 0. Using this

procedure, find the numerator and the denominator for each of irreducible

fractions a/b + c/d, a/b + e/f, a/b + g/h provided that integers a, b, c, d, e, f, g, h

are given.

Proc48. Taking into account that the least common multiple of two positive integers

A and B equals A·(B/GCD(A, B)), where GCD(A, B) is the greatest common

divisor of A and B, and using the GCD2 function from the task Proc46, write

an integer function LCM2(A, B) that returns the least common multiple of A

and B. Using this function, find the least common multiple for each of pairs

(A, B), (A, C), (A, D) provided that integers A, B, C, D are given.

Proc49. Taking into account the formula GCD(A, B, C) = GCD(GCD(A, B), C) and

using the GCD2 function from the task Proc46, write an integer function

GCD3(A, B, C) that returns the greatest common divisor of three positive

integers A, B, C. Using this function, find the greatest common divisor for each

of triples (A, B, C), (A, C, D), (B, C, D) provided that integers A, B, C, D are

given.

Proc50. Write a procedure TimeToHMS(T, H, M, S) that converts a time interval T

(in seconds) into the ―hours H, minutes M, seconds S‖ format (T is an input

integer parameter, H, M, S are output integer parameters). Using this

procedure, find the amount of hours, minutes and seconds for each of five

given time intervals T1, T2, …, T5.

Proc51. Write a procedure IncTime(H, M, S, T) that increases a time interval in

hours H, minutes M, seconds S on T seconds (H, M, S are input and output

positive integer parameters, T is an input positive integer parameter). Having

29

input hours H, minutes M, seconds S (as integers) and an integer T and using

the IncTime procedure, increase the given time interval on T seconds and

output new values of H, M, S.

Proc52. Write a logical function IsLeapYear(Y) that returns True if a year Y (a

positive integer parameter) is a leap year, and False otherwise. Output the

return values of this function for five given values of the parameter Y. Note

that a year is a leap year if it is divisible by 4 except for years that are divisible

by 100 and are not divisible by 400.

Proc53. Using the IsLeapYear function from the task Proc52, write an integer

function MonthDays(M, Y) that returns the amount of days for M-th month of

year Y (M and Y are integers, 1 ≤ M ≤ 12, Y > 0). Output the return value of

this function for a given year Y and each of given months M1, M2, M3.

Proc54. Using the MonthDays function from the task Proc53, write a procedure

PrevDate(D, M, Y) that changes a correct date, represented at the ―day D,

month number M, year Y‖ format, to a previous one (D, M, Y are input and

output integer parameters). Apply this procedure to three given dates and

output resulting previous ones.

Proc55. Using the MonthDays function from the task Proc53, write a procedure

NextDate(D, M, Y) that changes a correct date, represented at the ―day D,

month number M, year Y‖ format, to a next one (D, M, Y are input and output

integer parameters). Apply this procedure to three given dates and output

resulting next ones.

Proc56. Write a real-valued function Leng(xA, yA, xB, yB) that returns the length of a

segment AB with given coordinates of its endpoints:

|AB| = ((xA − xB)
2
 + (yA − yB)

2
)

1/2

(xA, yA, xB, yB are real-valued parameters). Using this function, find the lengths

of segments AB, AC, AD provided that coordinates of points A, B, C, D are

given.

Proc57. Using the Leng function from the task Proc56, write a real-valued function

Perim(xA, yA, xB, yB, xC, yC) that returns the perimeter of a triangle ABC with

given coordinates of its vertices (xA, yA, xB, yB, xC, yC are real-valued

parameters). Using the Perim function, find the perimeters of triangles ABC,

ABD, ACD provided that coordinates of points A, B, C, D are given.

Proc58. Using the Leng and Perim functions from the tasks Proc56 and Proc57,

write a real-valued function Area(xA, yA, xB, yB, xC, yC) that returns the area of a

triangle ABC:

SABC = (p·(p−|AB|)·(p−|AC|)·(p−|BC|))
1/2

,

where p is the half-perimeter. Using the Area function, find the areas of

triangles ABC, ABD, ACD provided that coordinates of points A, B, C, D are

given.

30

Proc59. Using the Leng and Area functions from the tasks Proc56 and Proc58, write

a real-valued function Dist(xP, yP, xA, yA, xB, yB) that returns the distance D(P,

AB) between a point P and a line AB:

D(P, AB) = 2·SPAB/|AB|,

where SPAB is the area of the triangle PAB. Using this function, find the

distance between a point P and each of lines AB, AC, BC provided that

coordinates of points P, A, B, C are given.

Proc60. Using the Dist function from the task Proc59, write a procedure

Alts(xA, yA, xB, yB, xC, yC, hA, hB, hC) that evaluates the altitudes hA, hB, hC drawn

from the vertices A, B, C of a triangle ABC (the coordinates of vertices are

input parameters, the values of altitudes are output parameters). Using this

procedure, evaluate the altitudes of each of triangles ABC, ABD, ACD

provided that the coordinates of points A, B, C, D are given.

9. Functions

This task group is intended for using in the Python and Ruby versions of

Programming Taskbook. Tasks included in this group are similar to the tasks of the

Proc group but they are formulated with taking into account Python and Ruby

features connected with passing parameters and returning function values.

9.1. Functions with numeric parameters

Func1. Write an integer function Sign(X) that returns the following value:

−1, if X < 0; 0, if X = 0; 1, if X > 0

(X is a real-valued parameter). Using this function, evaluate an expression

Sign(A) + Sign(B) for given real numbers A and B.

Func2. Write an integer function RootCount(A, B, C) that returns the amount of roots

of the quadratic equation A·x
2
 + B·x + C = 0 (A, B, C are real-valued

parameters, A ≠ 0). Using this function, find the amount of roots for each of

three quadratic equations with given coefficients. Note that the amount of roots

is determined by the value of a discriminant:

D = B
2
 − 4·A·C.

Func3. Write a real-valued function CircleS(R) that returns the area of a circle of

radius R (R is a real number). Using this function, find the areas of three circles

of given radiuses. Note that the area of a circle of radius R can be found by

formula S = π·R
2
. Use 3.14 for a value of π.

Func4. Write a real-valued function RingS(R1, R2) that returns the area of a ring

bounded by a concentric circles of radiuses R1 and R2 (R1 and R2 are real

numbers, R1 > R2). Using this function, find the areas of three rings with given

outer and inner radiuses. Note that the area of a circle of radius R can be found

by formula S = π·R
2
. Use 3.14 for a value of π.

31

Func5. Write a real-valued function TriangleP(a, h) that returns the perimeter of an

isosceles triangle with given base a and altitude h (a and h are real numbers).

Using this function, find the perimeters of three triangles with given bases and

altitudes. Note that the leg b of an isosceles triangle can be found by the

Pythagorean theorem:

b
2
 = (a/2)

2
 + h

2
.

Func6. Write an integer function SumRange(A, B) that returns a sum of all integers

in the range A to B inclusively (A and B are integers). In the case of A > B the

function returns 0. Using this function, find a sum of all integers in the range A

to B and in the range B to C provided that integers A, B, C are given.

Func7. Write a real-valued function Calc(A, B, Op) that performs an arithmetic

operation over nonzero real numbers A and B and returns the result value. An

arithmetic operation is determined by integer parameter Op as follows: 1 —

subtraction, 2 — multiplication, 3 — division, and addition otherwise. Having

input real numbers A, B and integers N1, N2, N3 and using this function,

perform over given A, B three operations determined by given N1, N2, N3.

Output the result value of each operation.

Func8. Write an integer function Quarter(x, y) that returns the number of a

coordinate quarter containing a point with nonzero real-valued coordinates

(x, y). Using this function, find the numbers of coordinate quarters containing

each of three points with given nonzero coordinates.

Func9. Write a logical function Even(K) that returns True, if an integer parameter K

is an even number, and False otherwise. Using this function, find the amount

of even numbers in a given sequence of 10 integers.

Func10. Write a logical function IsSquare(K) that returns True, if an positive integer

parameter K is a square of some integer, and False otherwise. Using this

function, find the amount of squares in a given sequence of 10 positive

integers.

Func11. Write a logical function IsPower5(K) that returns True, if an positive integer

parameter K is equal to 5 raised to some integer power, and False otherwise.

Using this function, find the amount of powers of base 5 in a given sequence

of 10 positive integers.

Func12. Write a logical function IsPowerN(K, N) that returns True, if an positive

integer parameter K is equal to N (> 1) raised to some integer power, and False

otherwise. Having input an integer N (> 1) and a sequence of 10 positive

integers and using this function, find the amount of powers of base N in the

given sequence.

Func13. Write a logical function IsPrime(N) that returns True, if an integer

parameter N (> 1) is a prime number, and False otherwise. Using this function,

find the amount of prime numbers in a given sequence of 10 integers greater

than 1. Note that an integer (> 1) is called a prime number if it has not positive

divisors except 1 and itself.

32

Func14. Write an integer function DigitCount(K) that returns the amount of digits in

the decimal representation of a positive integer K. Using this function, find the

amount of digits for each of five given positive integers.

Func15. Write an integer function DigitN(K, N) that returns the N-th digit in the

decimal representation of a positive integer K provided that the digits are

numbered from right to left. If the amount of digits is less than N then the

function returns −1. Using this function, output sequentially 1st, 2nd, 3rd, 4th,

5th digit for each of five given positive integers K1, K2, …, K5.

Func16. Write a logical function IsPalindrome(K) that returns True, if the decimal

representation of a positive parameter K is a palindrome (i. e., it is read equally

both from left to right and from right to left), and False otherwise. Using this

function, find the amount of palindromes in a given sequence of 10 positive

integers.

Func17. Write a real-valued function DegToRad(D) that converts the angle value D

in degrees into the one in radians (D is a real number, 0 ≤ D < 360). Note that

180° = π radians and use 3.14 for a value of π. Using this function, convert five

given angles from degrees into radians.

Func18. Write a real-valued function RadToDeg(R) that converts the angle value R

in radians into the one in degrees (R is a real number, 0 ≤ R < 2·π). Note that

180° = π radians and use 3.14 for a value of π. Using this function, convert five

given angles from radians into degrees.

Func19. Write a real-valued function Fact(N) that returns a factorial of a positive

integer N: N! = 1·2·…·N (the real return type allows to avoid the integer

overflow during the calculation of the factorials for large values of the

parameter N). Using this function, find the factorials of five given integers.

Func20. Write a real-valued function Fact2(N) that returns a double factorial N!!:

N!! = 1·3·5·…·N, if N is an odd number;

N!! = 2·4·6·…·N otherwise

(N is a positive integer; the real return type allows to avoid the integer

overflow during the calculation of the double factorials for large values of N).

Using this function, find the double factorials of five given integers.

Func21. Write an integer function Fib(N) that returns the value of N-th term of the

sequence of the Fibonacci numbers. The Fibonacci numbers FK are defined as

follows:

F1 = 1, F2 = 1, FK = FK−2 + FK−1, K = 3, 4, … .

Using this function, find five Fibonacci numbers with given order numbers N1,

N2, …, N5.

Func22. Write a function PowerA3(A) that returns the third degree of a real

number A (A is an input parameter). Using this function, find the third degree

of five given real numbers.

Func23. Write a function PowerA234(A) that computes the second, the third, and the

fourth degrees of a real number A and returns these degrees as three real

33

numbers (A is an input parameter). Using this function, find the second, the

third, and the fourth degrees of five given real numbers.

Func24. Write a function Mean(X, Y) that computes the arithmetical mean (X+Y)/2

and the geometrical mean (X·Y)
1/2

 of two positive real numbers X and Y and

returns the result as two real numbers (X and Y are input parameters). Using

this function, find the arithmetical mean and the geometrical mean of pairs

(A, B), (A, C), (A, D) provided that real numbers A, B, C, D are given.

Func25. Write a function TrianglePS(a) that computes the perimeter P = 3·a and the

area S = a
2
·(3)

1/2
/4 of an equilateral triangle with the side a and returns the

result as two real numbers (a is an input real-valued parameter). Using this

function, find the perimeters and the areas of three triangles with the given

lengths of the sides.

Func26. Write a function RectPS(x1, y1, x2, y2) that computes and returns the

perimeter P and the area S of a rectangle whose opposite vertices have

coordinates (x1, y1) and (x2, y2) and sides are parallel to coordinate axes (x1, y1,

x2, y2 are input real-valued parameters). Using this function, find the perimeters

and the areas of three rectangles with the given opposite vertices.

Func27. Write a function DigitCS(K) that finds and returns the amount C of digits in

the decimal representation of a positive integer K and also the sum S of its

digits (K is an input integer parameter). Using this function, find the amount

and the sum of digits for each of five given integers.

Func28. Write a function InvDigits(K) that inverts the order of digits of a positive

integer K and returns the obtained integer (K is an input parameter). Using this

function, invert the order of digits for each of five given integers.

Func29. Write a function AddRightDigit(D, K) that adds a digit D to the right side of

the decimal representation of a positive integer K and returns the obtained

number (D and K are input integer parameters, the value of D is in the range 0

to 9). Having input an integer K and two one-digit numbers D1, D2 and using

two calls of this function, sequentially add the given digits D1, D2 to the right

side of the given K and output the result of each adding.

Func30. Write a function AddLeftDigit(D, K) that adds a digit D to the left side of

the decimal representation of a positive integer K and returns the obtained

number (D and K are input integer parameters, the value of D is in the range 0

to 9). Having input an integer K and two one-digit numbers D1, D2 and using

two calls of this function, sequentially add the given digits D1, D2 to the left

side of the given K and output the result of each adding.

Func31. Write a function Swap(X, I, J) that exchanges the values of items XI and XJ

of a list X of real numbers (I and J are input integer parameters, the function

returns the None value). Having input a list of four real numbers and using

three calls of this function, sequentially exchange the values of the two first,

two last, and two middle items of the given list. Output the new values of the

list.

34

Func32. Write a function Minmax(X, I, J) that writes the minimal value of items XI

and XJ of a list X to the item XI and writes the maximal value of these items to

the item XJ (I and J are input integer parameters, the function returns the None

value). Using four calls of this function, find the minimal value and the

maximal value among four given real numbers.

Func33. Write a function SortInc3(X) that sorts the list X of three real-valued items

in ascending order (the function returns the None value). Using this function,

sort each of two given lists X and Y.

Func34. Write a function SortDec3(X) that sorts the list X of three real-valued items

in descending order (the function returns the None value). Using this function,

sort each of two given lists X and Y.

Func35. Write a function ShiftRight3(X) that performs a right cyclic shift of a list X

of three real-valued items: the value ot each item should be assigned to the

next item and the value of the last item should be assigned to the first item (the

function returns the None value). Using this function, perform the right cyclic

shift for each of two given lists X and Y.

Func36. Write a function ShiftLeft3(X) that performs a left cyclic shift of a list X of

three real-valued items: the value ot each item should be assigned to the

previous item and the value of the first item should be assigned to the last item

(the function returns the None value). Using this function, perform the left

cyclic shift for each of two given lists X and Y.

9.2. Additional tasks

Func37. Write a real-valued function Power1(A, B) that returns the power A
B

calculated by the formula A
B
 = exp(B·ln(A)) (A and B are real-valued

parameters). In the case of zero-valued or negative parameter A the function

returns 0. Having input real numbers P, A, B, C and using this function, find

the powers A
P
, B

P
, C

P
.

Func38. Write a real-valued function Power2(A, N) that returns the power A
N

calculated by the following formulas:

A
0
 = 1;

A
N
 = A·A·…·A (N factors), if N > 0;

A
N
 = 1/(A·A·…·A) (|N| factors), if N < 0

(A is a real-valued parameter, N is an integer parameter). Having input a real

number A and integers K, L, M and using this function, find the powers A
K
, A

L
,

A
M

.

Func39. Using the Power1 and Power2 functions (see Func37 and Func38), write a

real-valued function Power3(A, B) that returns the power A
B
 calculated as

follows (A and B are real-valued parameters): if B has a zero-valued fractional

part then the function Power2(A, N) is called (an integer variable N is equal to

B), otherwise the function Power1(A, B) is called. Having input real

numbers P, A, B, C and using the Power3 function, find the powers A
P
, B

P
, C

P
.

35

Func40. Write a real-valued function Exp1(x, ε) (x and ε are real numbers, ε > 0) that

returns an approximate value of the function exp(x) defined as follows:

exp(x) = 1 + x + x
2
/(2!) + x

3
/(3!) + … + x

n
/(n!) + …

(n! = 1·2·…·n). Stop adding new terms to the sum when the value of the next

term will be less than ε. Using this function, find the approximate values of the

function exp(x) at a given point x for six given ε.

Func41. Write a real-valued function Sin1(x, ε) (x and ε are real numbers, ε > 0) that

returns an approximate value of the function sin(x) defined as follows:

sin(x) = x − x
3
/(3!) + x

5
/(5!) − … + (−1)

n
·x

2·n+1
/((2·n+1)!) + … .

Stop adding new terms to the sum when the absolute value of the next term

will be less than ε. Using this function, find the approximate values of the

function sin(x) at a given point x for six given ε.

Func42. Write a real-valued function Cos1(x, ε) (x and ε are real numbers, ε > 0) that

returns an approximate value of the function cos(x) defined as follows:

cos(x) = 1 − x
2
/(2!) + x

4
/(4!) − … + (−1)

n
·x

2·n
/((2·n)!) + … .

Stop adding new terms to the sum when the absolute value of the next term

will be less than ε. Using this function, find the approximate values of the

function cos(x) at a given point x for six given ε.

Func43. Write a real-valued function Ln1(x, ε) (x and ε are real numbers, |x| < 1,

ε > 0) that returns an approximate value of the function ln(1 + x) defined as

follows:

ln(1 + x) = x − x
2
/2 + x

3
/3 − … + (−1)

n
·x

n+1
/(n+1) + … .

Stop adding new terms to the sum when the absolute value of the next term

will be less than ε. Using this function, find the approximate values of the

function ln(1 + x) at a given point x for six given ε.

Func44. Write a real-valued function Atan1(x, ε) (x and ε are real numbers, |x| < 1,

ε > 0) that returns an approximate value of the function atan(x) defined as

follows:

atan(x) = x − x
3
/3 + x

5
/5 − … + (−1)

n
·x

2·n+1
/(2·n+1) + … .

Stop adding new terms to the sum when the absolute value of the next term

will be less than ε. Using this function, find the approximate values of the

function atan(x) at a given point x for six given ε.

Func45. Write a real-valued function Power4(x, a, ε) (x, a, ε are real numbers,

|x| < 1, a, ε > 0) that returns an approximate value of the function (1 + x)
a

defined as:

(1 + x)
a
 = 1 + a·x + a·(a−1)·x

2
/(2!) + … + a·(a−1)·…·(a−n+1)·x

n
/(n!) + … .

Stop adding new terms to the sum when the absolute value of the next term

will be less than ε. Using this function, find the approximate values of the

function (1 + x)
a
 at a given point x for a given exponent a and six given ε.

Func46. Write an integer function GCD2(A, B) that returns the greatest common

divisor (GCD) of two positive integers A and B. Use the Euclidean algorithm:

GCD(A, B) = GCD(B, A mod B), if B ≠ 0; GCD(A, 0) = A,

36

where ―mod‖ denotes the operator of taking the remainder after integer

division. Using this function, find the greatest common divisor for each of

pairs (A, B), (A, C), (A, D) provided that integers A, B, C, D are given.

Func47. Using the GCD2 function from the task Func46, write a procedure Frac1(a,

b, p, q), that simplifies a fraction a/b to the irreducible form p/q (a and b are

input integer parameters, p and q are output integer parameters). The sign of a

resulting fraction p/q is assigned to its numerator, so q > 0. Using this

procedure, find the numerator and the denominator for each of irreducible

fractions a/b + c/d, a/b + e/f, a/b + g/h provided that integers a, b, c, d, e, f, g, h

are given.

Func48. Taking into account that the least common multiple of two positive integers

A and B equals A·(B/GCD(A, B)), where GCD(A, B) is the greatest common

divisor of A and B, and using the GCD2 function from the task Func46, write

an integer function LCM2(A, B) that returns the least common multiple of A

and B. Using this function, find the least common multiple for each of pairs

(A, B), (A, C), (A, D) provided that integers A, B, C, D are given.

Func49. Taking into account the formula GCD(A, B, C) = GCD(GCD(A, B), C) and

using the GCD2 function from the task Func46, write an integer function

GCD3(A, B, C) that returns the greatest common divisor of three positive

integers A, B, C. Using this function, find the greatest common divisor for each

of triples (A, B, C), (A, C, D), (B, C, D) provided that integers A, B, C, D are

given.

Func50. Write a function TimeToHMS(T) that converts a time interval T (in

seconds) into the ―hours H, minutes M, seconds S‖ format and returns the

values H, M, S (T, H, M, S are integers). Using this function, find the amount

of hours, minutes and seconds for each of five given time intervals T1, T2, …,

T5.

Func51. Write a function IncTime(H, M, S, T) that increases a time interval in

hours H, minutes M, seconds S on T seconds and returns new values of hours,

minutes, and seconds (all numbers are positive integers). Having input

hours H, minutes M, seconds S (as integers) and an integer T and using the

IncTime function, increase the given time interval on T seconds and output

new values of H, M, S.

Func52. Write a logical function IsLeapYear(Y) that returns True if a year Y (a

positive integer parameter) is a leap year, and False otherwise. Output the

return values of this function for five given values of the parameter Y. Note

that a year is a leap year if it is divisible by 4 except for years that are divisible

by 100 and are not divisible by 400.

Func53. Using the IsLeapYear function from the task Func52, write an integer

function MonthDays(M, Y) that returns the amount of days for M-th month of

year Y (M and Y are integers, 1 ≤ M ≤ 12, Y > 0). Output the return value of

this function for a given year Y and each of given months M1, M2, M3.

37

Func54. Using the MonthDays function from the task Func53, write a function

PrevDate(D, M, Y) that changes a correct date, represented at the ―day D,

month number M, year Y‖ format, to a previous one and returns new values of

day, month, and year (all numbers are integers). Apply this function to three

given dates and output resulting previous ones.

Func55. Using the MonthDays function from the task Func53, write a function

NextDate(D, M, Y) that changes a correct date, represented at the ―day D,

month number M, year Y‖ format, to a next one and returns new values of day,

month, and year (all numbers are integers). Apply this function to three given

dates and output resulting next ones.

Func56. Write a real-valued function Leng(xA, yA, xB, yB) that returns the length of a

segment AB with given coordinates of its endpoints:

|AB| = ((xA − xB)
2
 + (yA − yB)

2
)

1/2

(xA, yA, xB, yB are real-valued parameters). Using this function, find the lengths

of segments AB, AC, AD provided that coordinates of points A, B, C, D are

given.

Func57. Using the Leng function from the task Func56, write a real-valued function

Perim(xA, yA, xB, yB, xC, yC) that returns the perimeter of a triangle ABC with

given coordinates of its vertices (xA, yA, xB, yB, xC, yC are real-valued

parameters). Using the Perim function, find the perimeters of triangles ABC,

ABD, ACD provided that coordinates of points A, B, C, D are given.

Func58. Using the Leng and Perim functions from the tasks Func56 and Func57,

write a real-valued function Area(xA, yA, xB, yB, xC, yC) that returns the area of a

triangle ABC:

SABC = (p·(p−|AB|)·(p−|AC|)·(p−|BC|))
1/2

,

where p is the half-perimeter. Using the Area function, find the areas of

triangles ABC, ABD, ACD provided that coordinates of points A, B, C, D are

given.

Func59. Using the Leng and Area functions from the tasks Func56 and Func58,

write a real-valued function Dist(xP, yP, xA, yA, xB, yB) that returns the distance

D(P, AB) between a point P and a line AB:

D(P, AB) = 2·SPAB/|AB|,

where SPAB is the area of the triangle PAB. Using this function, find the

distance between a point P and each of lines AB, AC, BC provided that

coordinates of points P, A, B, C are given.

Func60. Using the Dist function from the task Func59, write a function

Alts(xA, yA, xB, yB, xC, yC) that evaluates and returns the altitudes hA, hB, hC

drawn from the vertices A, B, C of a triangle ABC (the coordinates of vertices

are input real-valued parameters). Using this function, evaluate the altitudes of

each of triangles ABC, ABD, ACD provided that the coordinates of points A, B,

C, D are given.

38

10. Numerical sequences

All input numerical sequences in tasks of this group contains one or more

elements (in particular, an integer N is always greater than 0). In tasks Series29–

Series40 the amount K of input sequences is assumed to be nonzero too.

Series1. Given ten real numbers, find their sum.

Series2. Given ten real numbers, find their product.

Series3. Given ten real numbers, find their average.

Series4. An integer N and a sequence of N real numbers are given. Output the sum

and the product of all elements of this sequence.

Series5. An integer N and a sequence of N positive real numbers are given. Output

in the same order the integer parts of all elements of this sequence (as real

numbers with zero fractional part). Also output the sum of all integer parts.

Series6. An integer N and a sequence of N positive real numbers are given. Output

in the same order the fractional parts of all elements of this sequence (as real

numbers with zero integer part). Also output the product of all fractional parts.

Series7. An integer N and a sequence of N real numbers are given. Output in the

same order the rounded values of all elements of this sequence to the nearest

whole number (as integers). Also output the sum of all rounded values.

Series8. An integer N and a sequence of N integers are given. Output in the same

order all even-valued elements of the sequence and also their amount K.

Series9. An integer N and a sequence of N integers are given. Output in the same

order the order numbers of all odd-valued elements of the sequence and also

their amount K.

Series10. An integer N and a sequence of N integers are given. Output the logical

value True if the sequence contains positive-valued elements, otherwise output

False.

Series11. Integers K, N and a sequence of N integers are given. Output the logical

value False if the sequence contains elements of value less than K, otherwise

output False.

Series12. A sequence of nonzero integers terminated by zero is given (the final zero

is not an element of the sequence). Output the length of the sequence.

Series13. A sequence of nonzero integers terminated by zero is given. Output the

sum of all positive-valued elements of the sequence. If the sequence does not

contain the required elements then output 0.

Series14. An integer K and a sequence of nonzero integers terminated by zero are

given (the final zero is not an element of the sequence). Output the amount of

elements whose value less than K.

Series15. An integer K and a sequence of nonzero integers terminated by zero are

given (the final zero is not an element of the sequence). Output the order

39

number of the first element whose value greater than K. If the sequence does

not contain the required elements then output 0.

Series16. An integer K and a sequence of nonzero integers terminated by zero are

given (the final zero is not an element of the sequence). Output the order

number of the last element whose value greater than K. If the sequence does

not contain the required elements then output 0.

Series17. A real number B, an integer N and a sequence of N real numbers are given.

The values of elements of the sequence are in ascending order. Output the

number B jointly with the elements of the sequence so that all output numbers

were in ascending order.

Series18. An integer N and a sequence of N integers are given. The values of

elements of the sequence are in ascending order, the sequence may contain

equal elements. Output in the same order all distinct elements of the sequence.

Series19. An integer N (> 1) and a sequence of N integers are given. Output the

elements that are less than their left-side neighbor. Also output the amount K

of such elements.

Series20. An integer N (> 1) and a sequence of N integers are given. Output the

elements that are less than their right-side neighbor. Also output the amount K

of such elements.

Series21. An integer N (> 1) and a sequence of N real numbers are given. Output the

logical value True if the values of elements are in ascending order, otherwise

output False.

Series22. An integer N (> 1) and a sequence of N real numbers are given. Output 0 if

the values of elements are in descending order, otherwise output the order

number of the first element that breaks the required order.

Series23. An integer N (> 2) and a sequence of N real numbers are given. A

sequence is called a sawtooth one if each inner element of the sequence is

either greater or less than both of its neighbors (that is, each inner element is a

tooth). Output 0 if the given sequence is a sawtooth one, otherwise output the

order number of the first element that is not a tooth.

Series24. An integer N and a sequence of N integers are given. The sequence

contains at least two zero-valued elements. Output the sum of the values of

elements placed between two last zero-valued elements. If two last zero-valued

elements are placed side by side then output 0.

Series25. An integer N and a sequence of N integers are given. The sequence

contains at least two zero-valued elements. Output the sum of the values of

elements placed between the first and the last zero-valued elements. If the first

and the last zero-valued elements are placed side by side then output 0.

Nested loops

Series26. Positive integers K, N and a sequence of N real numbers A1, A2, …, AN are

given. For each element of the sequence find its value raised to the power of K:

40

(A1)
K
, (A2)

K
, …, (AN)

K
.

Series27. An integer N and a sequence of N real numbers A1, A2, …, AN are given.

Output the following numbers:

A1, (A2)
2
, …, (AN−1)

N−1
, (AN)

N
.

Series28. An integer N and a sequence of N real numbers A1, A2, …, AN are given.

Output the following numbers:

(A1)
N
, (A2)

N−1
, …, (AN−1)

2
, AN.

Series29. Integers K, N and K sequences of integers are given. Each given sequence

contains N elements. Find the total sum of the values of elements of all given

sequences.

Series30. Integers K, N and K sequences of integers are given. Each given sequence

contains N elements. Find the sum of the values of all elements for each given

sequence.

Series31. Integers K, N and K sequences of integers are given. Each given sequence

contains N elements. Find the amount of the sequences containing an element

with the value 2.

Series32. Integers K, N and K sequences of integers are given. Each given sequence

contains N elements. Output the order number of the first element with the

value 2 for each given sequence (if a sequence does not contain elements with

the required value then output 0).

Series33. Integers K, N and K sequences of integers are given. Each given sequence

contains N elements. Output the order number of the last element with the

value 2 for each given sequence (if a sequence does not contain elements with

the required value then output 0).

Series34. Integers K, N and K sequences of integers are given. Each given sequence

contains N elements. Process each sequence as follows: output the sum of the

values of all its elements if the sequence contains an element with the value 2,

otherwise output 0.

Series35. An integer K and K sequences of nonzero integers are given. Each given

sequence is terminated by zero, which is not an element of the sequence.

Output the length of each given sequence. Also output the total length of all

given sequences.

Series36. An integer K and K sequences of nonzero integers are given. Each given

sequence contains at least two elements and is terminated by zero, which is not

an element of the sequence. Output the amount of the sequences whose

element values are in ascending order.

Series37. An integer K and K sequences of nonzero integers are given. Each given

sequence contains at least two elements and is terminated by zero, which is not

an element of the sequence. Output the amount of sequences whose element

values are in ascending or in descending order.

41

Series38. An integer K and K sequences of nonzero integers are given. Each given

sequence contains at least two elements and is terminated by zero, which is not

an element of the sequence. Process each sequence as follows: output 1 or −1

if its element values are in ascending or in descending order respectively,

otherwise output 0.

Series39. An integer K and K sequences of nonzero integers are given. Each given

sequence contains at least three elements and is terminated by zero, which is

not an element of the sequence. Output the amount of the sawtooth sequences

(see the definition of a sawtooth sequence in Series23).

Series40. An integer K and K sequences of nonzero integers are given. Each given

sequence contains at least three elements and is terminated by zero, which is

not an element of the sequence. Process each sequence as follows: output its

length if the sequence is a sawtooth one (see Series23), otherwise output the

order number of its first element that is not a tooth.

11. Minimums and maximums

All tasks of this section should be solved by means of one-pass algorithms,

which require one loop for obtaining result. One-pass algorithms do not need to store

all input data simultaneously, so they may be developed without using arrays.

All input sequences in tasks of this group contain one or more elements (in

particular, an integer N is always greater than 0).

Minmax1. An integer N and a sequence of N real numbers are given. Find the

minimal element and the maximal element of the sequence (that is, elements

with the minimal value and the maximal value respectively).

Minmax2. An integer N and a sequence of N rectangles are given. Each rectangle is

defined by a pair of its sides (a, b). Find the rectangle with the minimal area

and output the value of its area.

Minmax3. An integer N and a sequence of N rectangles are given. Each rectangle is

defined by a pair of its sides (a, b). Find the rectangle with the maximal

perimeter and output the value of its perimeter.

Minmax4. An integer N and a sequence of N real numbers are given. Find the order

number of the minimal element of the sequence.

Minmax5. An integer N and a sequence of N pairs of real numbers (m, v) are given.

Each pair of given numbers contains the weight m and the volume v of a detail

that is made of some homogeneous material. Output the order number of a

detail that is made of the material with maximal density. Also output the

corresponding density. Note that the density P can be found by formula

P = m/v.

Minmax6. An integer N and a sequence of N integers are given. Find the order

numbers of the first minimal element and the last maximal element of the

sequence.

42

Minmax7. An integer N and a sequence of N integers are given. Find the order

numbers of the first maximal element and the last minimal element of the

sequence.

Minmax8. An integer N and a sequence of N integers are given. Find the order

numbers of the first and the last minimal elements of the sequence.

Minmax9. An integer N and a sequence of N integers are given. Find the order

numbers of the first and the last maximal elements of the sequence.

Minmax10. An integer N and a sequence of N integers are given. Find the order

number of the first extremal (that is, minimal or maximal) element of the

sequence.

Minmax11. An integer N and a sequence of N integers are given. Find the order

number of the last extremal (that is, minimal or maximal) element of the

sequence.

Minmax12. An integer N and a sequence of N real numbers are given. Output the

minimal positive number contained in the sequence. If the sequence does not

contain positive numbers then output 0.

Minmax13. An integer N and a sequence of N integers are given. Output the order

number of the first maximal odd number contained in the sequence. If the

sequence does not contain odd numbers then output 0.

Minmax14. A positive real number B and a sequence of 10 real numbers are given.

Find the minimum among elements that are greater than B and output its value

and its order number. If the sequence does not contain elements greater than B

then output 0 twice (the first zero as a real number, the second zero as an

integer).

Minmax15. Two real numbers B, C (0 < B < C) and a sequence of 10 real numbers

are given. Find the maximum among elements that are in the interval (B, C)

and output its value and its order number. If the sequence does not contain

elements in the interval (B, C) then output 0 twice (the first zero as a real

number, the second zero as an integer).

Minmax16. An integer N and a sequence of N integers are given. Find the amount of

the elements that are located before the first minimal element.

Minmax17. An integer N and a sequence of N integers are given. Find the amount of

the elements that are located after the last maximal element.

Minmax18. An integer N and a sequence of N integers are given. Find the amount of

the elements that are located between the first and the last maximal element. If

the sequence contains the unique maximal element then output 0.

Minmax19. An integer N and a sequence of N integers are given. Find the amount of

the minimal elements of the sequence.

Minmax20. An integer N and a sequence of N integers are given. Find the total

amount of all extremal (that is, minimal or maximal) elements of the sequence.

43

Minmax21. An integer N (> 2) and a sequence of N real numbers are given. The

elements of the sequence represent some experimental data. Find the average

of the experimental data provided that the minimal and maximal values must

be ignored.

Minmax22. An integer N (> 2) and a sequence of N real numbers are given. Find two

smallest elements of the sequence and output their values in ascending order.

Minmax23. An integer N (> 3) and a sequence of N real numbers are given. Find

three greatest elements of the sequence and output their values in descending

order.

Minmax24. An integer N (> 1) and a sequence of N real numbers are given. Find the

maximal sum of two adjacent elements of the sequence.

Minmax25. An integer N (> 1) and a sequence of N real numbers are given. Find two

adjacent elements that have the minimal product of their values and output

their order numbers in ascending order.

Minmax26. An integer N and a sequence of N integers are given. Output the maximal

amount of successive elements whose values are even numbers. If the

sequence does not contain even numbers then output 0.

Minmax27. An integer N and a sequence of N integers are given. The sequence

contains elements of values 0 and 1 only. Find the longest subsequence of the

successive elements with equal values, and output the order number of its

initial element and the amount of its elements. If there are several such

subsequences then output the order number of the first one.

Minmax28. An integer N and a sequence of N integers are given. The sequence

contains elements of values 0 and 1 only. Find the longest subsequence of the

successive elements of value 1, and output the order number of its initial

element and the amount of its elements. If there are several such subsequences

then output the order number of the first one. If the sequence does not contain

elements of value 1 then output 0 twice.

Minmax29. An integer N and a sequence of N integers are given. Find the maximal

amount of the successive elements with the minimal value.

Minmax30. An integer N and a sequence of N integers are given. Find the minimal

amount of the successive elements with the maximal value.

12. One-dimensional arrays

The condition ―An array of N integers (or real numbers) is given‖ means that

the actual size of the array (an integer N) and all its elements are given. The size of

any array is assumed to be in the range 2 to 10, if the task does not specify it

explicitly. The order number of the first element of array is assumed to be equal to 1.

If a task connected with array creation or array changing does not specify

output data then the resulting array elements are supposed to be output in ascending

order of their indices.

44

12.1. Array creation

The size of a resulting array is assumed to be not greater than 10 in all tasks

connected with the array creation.

Array1. Given an integer N (> 0), create and output an array of N integers that are the

first positive odd numbers: 1, 3, 5, … .

Array2. Given an integer N (> 0), create and output an array of N integers that are the

first positive integer powers of 2: 2, 4, 8, 16, … .

Array3. An integer N (> 1), the first term A and the common difference D of an

arithmetic sequence are given (A and D are real numbers). Create and output

an array of N real numbers that are the initial terms of this sequence:

A, A + D, A + 2·D, A + 3·D, … .

Array4. An integer N (> 1), the first term A and the common ratio R of a geometric

sequence are given (A and D are real numbers). Create and output an array of

N real numbers that are the initial terms of this sequence:

A, A·R, A·R
2
, A·R

3
, … .

Array5. Given an integer N (> 2), create and output an array of N integers that are the

initial terms of a sequence {FK} of the Fibonacci numbers:

F1 = 1, F2 = 1, FK = FK−2 + FK−1, K = 3, 4, … .

Array6. Given three integers N (> 2), A, B, create and output an array of N integers

such that the first element is equal to A, the second one is equal to B, and each

subsequent element is equal to the sum of all previous ones.

12.2. Output of array elements

Array7. Given an array of N real numbers, output its elements in inverse order.

Array8. Given an array of N integers, output all odd numbers contained in the array

in ascending order of their indices. Also output the amount K of odd numbers

contained in the array.

Array9. Given an array of N integers, output all even numbers contained in the array

in descending order of their indices. Also output the amount K of even

numbers contained in the array.

Array10. Given an array of N integers, output all even numbers contained in the array

in ascending order of their indices and then output all odd numbers contained

in the array in descending order of their indices.

Array11. An array A of N real numbers and an integer K (1 ≤ K ≤ N) are given.

Output array elements with order numbers that are multiples of K: AK, A2·K,

A3·K, … . Do not use conditional statements.

Array12. An array A of N real numbers is given (N is an even number). Output array

elements with even order numbers in ascending order of indices: A2, A4, A6, …,

AN. Do not use conditional statements.

45

Array13. An array A of N real numbers is given (N is an odd number). Output array

elements with odd order numbers in descending order of indices: AN, AN−2,

AN−4, …, A1. Do not use conditional statements.

Array14. An array A of N real numbers is given. Output array elements with even

order numbers (in ascending order of indices) and then output array elements

with odd order numbers (in ascending order of indices too):

A2, A4, A6, …, A1, A3, A5, … .

Do not use conditional statements.

Array15. An array A of N real numbers is given. Output array elements with odd

order numbers in ascending order of indices and then output array elements

with even order numbers in descending order of indices:

A1, A3, A5, …, A6, A4, A2.

Do not use conditional statements.

Array16. An array A of N real numbers is given. Output array elements as follows:

A1, AN, A2, AN−1, A3, AN−2, … .

Array17. An array A of N real numbers is given. Output array elements as follows:

A1, A2, AN, AN−1, A3, A4, AN−2, AN−3, … .

12.3. Analysis of array elements

Some tasks of this section may be solved without storing all input data

simultaneously, so they do not need arrays for solving. However, using arrays usually

leads to more simple and obvious algorithms.

Array18. An array A of 10 nonzero integers is given. Output the value of the first

element AK that satisfies the following inequality: AK < A10. If the array does

not contain such elements then output 0.

Array19. An array A of 10 integers is given. Output the order number of the last

element AK that satisfies the following double inequality: A1 < AK < A10. If the

array does not contain such elements then output 0.

Array20. An array of N real numbers and two integers K and L (1 ≤ K ≤ L ≤ N) are

given. Find the sum of array elements with the order numbers in the range K

to L inclusively.

Array21. An array of N real numbers and two integers K and L (1 ≤ K ≤ L ≤ N) are

given. Find the average of array elements with the order numbers in the

range K to L inclusively.

Array22. An array of N real numbers and two integers K and L (1 < K ≤ L ≤ N) are

given. Find the sum of all array elements except ones with the order numbers

in the range K to L inclusively.

Array23. An array of N real numbers and two integers K and L (1 < K ≤ L ≤ N) are

given. Find the average of all array elements except ones with the order

numbers in the range K to L inclusively.

46

Array24. An array of N distinct integers is given. If the array elements represent an

arithmetic sequence (see Array3) then output its common difference, otherwise

output 0.

Array25. An array of N nonzero integers is given. If the array elements represent a

geometric sequence (see Array4) then output its common ratio, otherwise

output 0.

Array26. An array of N integers is given. If odd and even numbers are alternated in

the array then output 0, otherwise output the order number of the first element

that breaks the above condition.

Array27. An array of N nonzero integers is given. If positive and negative numbers

are alternated in the array then output 0, otherwise output the order number of

the first element that breaks the above condition.

Array28. Given an array A of N real numbers, find the minimum among elements

with even order numbers: A2, A4, A6, … .

Array29. Given an array A of N real numbers, find the maximum among elements

with odd order numbers: A1, A3, A5, … .

Array30. An array of N real numbers is given. Find the order numbers of array

elements that are greater than their right neighbor. Output these order numbers

in ascending order and also output the amount of such elements.

Array31. An array of N real numbers is given. Find the order numbers of array

elements that are greater than their left neighbor. Output these order numbers

in descending order and also output the amount of such elements.

Array32. Given an array of N real numbers, find the order number of its first local

minimum (an array element is called the local minimum if it is smaller than its

neighbors).

Array33. Given an array of N real numbers, find the order number of its last local

maximum (an array element is called the local maximum if it is greater than its

neighbors).

Array34. Given an array of N real numbers, find the maximum among its local

minimums (see the local minimum definition in Array32).

Array35. Given an array of N real numbers, find the minimum among its local

maximums (see the local maximum definition in Array33).

Array36. Given an array of N real numbers, find the maximum among array elements

that are neither local minimum nor local maximum (see the definitions of local

minimum and local maximum in Array32 and Array33 respectively). If the

array does not contain such elements then output 0 (as a real number).

Array37. Given an array of N real numbers, find the amount of its parts of ascending

(that is, parts that contain elements whose values are in ascending order).

Array38. Given an array of N real numbers, find the amount of its parts of

descending (that is, parts that contain elements whose values are in descending

order).

47

Array39. Given an array of N real numbers, find the amount of its parts of

monotonicity (that is, parts that contain elements whose values are in

ascending or in descending order).

Array40. A real number R and an array A of N real numbers are given. Find the array

element that is the nearest to the number R (i. e., an element AK such that the

value |AK − R| is minimal).

Array41. Given an array of N real numbers, find two adjacent elements with the

maximal sum of values and output these elements in ascending order of its

indices.

Array42. A real number R and an array of N real numbers are given. Find two

adjacent elements whose sum of values is the nearest to the number R and

output these elements in ascending order of its indices (see the definition of

two nearest numbers in Array40).

Array43. Given an array of N integers whose values are in ascending or in

descending order, find the amount of its elements with distinct values.

Array44. An array of N integers is given, the array contains two elements with equal

values. Find these elements and output their order numbers in ascending order.

Array45. Given an array of N real numbers, find two nearest array elements (i. e.,

two different elements AK and AL such that the value |AK − AL| is minimal) and

output their order numbers in ascending order.

Array46. A real number R and an array of N real numbers are given. Find two

different elements such that the sum of their values is the nearest to the

number R, and output these elements in ascending order of indices (see the

definition of two nearest numbers in Array40).

Array47. Given an array of N integers, find the amount of its elements with distinct

values.

Array48. Given an array of N integers, find the maximal amount of its elements with

equal values.

Array49. An array of N integers is given. If the array is a permutation (i. e., if the

array contains all integers in the range 1 to N) then output 0, otherwise output

the order number of the first inadmissible element.

Array50. An array A of N integers is given, the array is a permutation (see the

permutation definition in Array49). Find the amount of inversions in this

permutation (i. e., the amount of pairs of elements AI and AJ such that I < J and

AI > AJ).

12.4. Work with several one-dimensional arrays

Array51. Two arrays A and B of N real numbers are given. Exchange the contents of

the given arrays and output elements of the changed array A and then output

elements of the changed array B.

48

Array52. Given an array A of N real numbers, create a new array B of the same size

with elements defined as:

BK = 2·AK, if AK < 5,

 AK/2 otherwise.

Array53. Two arrays A and B of N real numbers are given. Create a new array C of

the same size; each element CK must be equal to the largest of elements of A

and B with the same index K.

Array54. An array A of N integers is given. Write elements of A whose values are

even numbers to a new array B (in the same order) and output the size of

array B and all its elements.

Array55. An array A of N (≤ 15) integers is given. Write elements of A with odd

order numbers (1, 3, …) to a new array B and output the size of array B and all

its elements. Do not use conditional statements.

Array56. An array A of N (≤ 15) integers is given. Write elements of A with order

numbers that are multiples of 3 (3, 6, …) to a new array B and output the size

of array B and all its elements. Do not use conditional statements.

Array57. An array A of N integers is given. Write elements of A with even order

numbers to a new array B and then write elements of A with odd order

numbers to the same array B, so the array B will contain the following

elements:

A2, A4, A6, …, A1, A3, A5, … .

Do not use conditional statements.

Array58. An array A of N real numbers is given. Create a new array B of the same

size; each array element BK must be equal to the sum of elements of A with the

order numbers in the range 1 to K.

Array59. An array A of N real numbers is given. Create a new array B of the same

size; each array element BK must be equal to the average of elements of A with

the order numbers in the range 1 to K.

Array60. An array A of N real numbers is given. Create a new array B of the same

size; each array element BK must be equal to the sum of elements of A with the

order numbers in the range K to N.

Array61. An array A of N real numbers is given. Create a new array B of the same

size; each array element BK must be equal to the average of elements of A with

the order numbers in the range K to N.

Array62. Given an array A of N real numbers, create two new arrays B and C and

write all positive elements of A to the array B and all negative elements of A to

the array C (in the same order). Output the size of the array B and all its

elements and then output the size of the array C and all its elements.

Array63. Two arrays A and B of 5 real numbers are given. Values of elements of

each array are in ascending order. Write all elements of A and B to a new

array C (of size 10) so that values of all elements of C were in ascending order.

49

Array64. Three arrays A, B, C of NA, NB, NC integers are given. Values of elements of

each array are in descending order. Write all elements of A, B, C to a new

array D (of size NA + NB + NC) so that values of all elements of D were in

descending order.

12.5. Array changing

All tasks of this subsection should be solved without using additional arrays.

Array65. An array A of N real numbers and an integer K (1 ≤ K ≤ N) are given.

Increase the value of each element of A by the initial value of AK.

Array66. An array of N integers is given. Increase all even numbers contained in the

array by the initial value of the first even number in the array. If the array does

not contain even numbers then do not change it.

Array67. An array of N integers is given. Increase all odd numbers contained in the

array by the initial value of the last odd number in the array. If the array does

not contain odd numbers then do not change it.

Array68. Given an array of N real numbers, exchange values of its minimal and

maximal element.

Array69. Given an array of N real numbers (N is an even number), exchange values

of its first and second element, its third and fourth element, and so on.

Array70. Given an array of N real numbers (N is an even number), exchange values

of the first half and the second half of its elements.

Array71. Given an array of N real numbers, change the order of its elements to

inverse one.

Array72. An array A of N real numbers and two integers K and L (1 ≤ K < L ≤ N) are

given. Change the order of the array elements between AK and AL (including

these elements) to inverse one.

Array73. An array A of N real numbers and two integers K and L (1 ≤ K < L ≤ N) are

given. Change the order of the array elements between AK and AL (not

including these elements) to inverse one.

Array74. An array of N real numbers is given. Assign zero value to the array

elements between the minimal element and the maximal element (not

including these elements).

Array75. An array of N real numbers is given. Change the order of the array elements

between the minimal element and the maximal element (including these

elements) to inverse one.

Array76. Given an array of N real numbers, assign zero value to all its local

maximums (an array element is called the local maximum if it is greater than

its neighbors).

Array77. Given an array of N real numbers, replace each local minimum with its

square (an array element is called the local minimum if it is smaller than its

neighbors).

50

Array78. Given an array of N real numbers, replace each array element with the

average of this element and its neighbors.

Array79. Given an array of N real numbers, perform the right shift of array elements

on one position by assigning initial values of A1, A2, …, AN−1 to elements A2,

A3, …, AN respectively (an initial value of the last element will be lost). Assign

zero value to the first element of the changed array.

Array80. Given an array of N real numbers, perform the left shift of array elements

on one position by assigning initial values of AN, AN−1, …, A2 to elements AN−1,

AN−2, …, A1 respectively (an initial value of the first element will be lost).

Assign zero value to the last element of the changed array.

Array81. Given an array of N real numbers and an integer K (1 ≤ K < N), perform the

right shift of array elements on K positions by assigning initial values of A1, A2,

…, AN−K to elements AK+1, AK+2, …, AN respectively (an initial value of the last

K elements will be lost). Assign zero value to the first K elements of the

changed array.

Array82. Given an array of N real numbers and an integer K (1 ≤ K < N), perform the

left shift of array elements on K positions by assigning initial values of AN,

AN−1, …, AK+1 to elements AN−K, AN−K−1, …, A1 respectively (an initial value of

the first K elements will be lost). Assign zero value to the last K elements of

the changed array.

Array83. Given an array of N real numbers, perform the right cyclic shift of array

elements on one position by assigning initial values of A1, A2, …, AN−1, AN to

elements A2, A3, …, AN, A1 respectively.

Array84. Given an array of N real numbers, perform the left cyclic shift of array

elements on one position by assigning initial values of AN, AN−1, …, A2, A1 to

elements AN−1, AN−2, …, A1, AN respectively.

Array85. Given an array of N real numbers and an integer K (1 ≤ K ≤ 4, K < N),

perform the right cyclic shift of array elements on K positions by assigning

initial values of A1, A2, …, AN to elements AK+1, AK+2, …, AK respectively. An

additional array of 4 elements may be used for performing the required shift.

Array86. Given an array of N real numbers and an integer K (1 ≤ K ≤ 4, K < N),

perform the left cyclic shift of array elements on K positions by assigning

initial values of AN, AN−1, …, A1 to elements AN−K, AN−K−1, …, AN−K+1

respectively. An additional array of 4 elements may be used for performing the

required shift.

Array87. An array of N real numbers is given. The values of all array elements,

except the first one, are in ascending order. Arrange all array elements in

ascending order by moving the first element to a new position.

Array88. An array of N real numbers is given. The values of all array elements,

except the last one, are in ascending order. Arrange all array elements in

ascending order by moving the last element to a new position.

51

Array89. An array of N real numbers is given. The values of all array elements,

except one element, are in descending order. Arrange all array elements in

descending order by moving the element, that violates ordering, to a new

position.

Array90. An array of N real numbers and an integer K (1 ≤ K ≤ N) are given. Remove

an element with the order number K from the array.

Array91. An array of N real numbers and two integers K and L (1 ≤ K < L ≤ N) are

given. Remove elements with the order numbers in the range K to L

inclusively from the array and output the size of the changed array and all its

elements.

Array92. Given an array of N integers, remove all odd numbers from the array and

output the size of the changed array and all its elements.

Array93. Given an array of N (> 2) integers, remove all elements with even order

numbers (2, 4, …) from the array. Do not use conditional statements.

Array94. Given an array of N (> 2) integers, remove all elements with odd order

numbers (1, 3, …) from the array. Do not use conditional statements.

Array95. Given an array of N integers, remove all successive equal elements (except

for their first occurrence) from the array.

Array96. Given an array of N integers, remove all equal elements (except for their

first occurrence) from the array.

Array97. Given an array of N integers, remove all equal elements (except for their

last occurrence) from the array.

Array98. Given an array of N integers, remove all elements whose values appear less

than three times in the array. Output the size of the changed array and all its

elements.

Array99. Given an array of N integers, remove all elements whose values appear

more than twice in the array. Output the size of the changed array and all its

elements.

Array100. Given an array of N integers, remove all elements whose values appear

exactly twice in the array. Output the size of the changed array and all its

elements.

Array101. An array of N real numbers and an integer K (1 ≤ K ≤ N) are given. Insert

a new element with zero value before an element with the order number K.

Array102. An array of N real numbers and an integer K (1 ≤ K ≤ N) are given. Insert

a new element with zero value after an element with the order number K.

Array103. An array of N real numbers is given. Insert new elements with zero value

before an element with the minimal value and after an element with the

maximal value.

Array104. An array of N real numbers and two integers K and M (1 ≤ K ≤ N,

1 ≤ M ≤ 10) are given. Insert M new elements with zero value before an

element with the order number K.

52

Array105. An array of N real numbers and two integers K and M (1 ≤ K ≤ N,

1 ≤ M ≤ 10) are given. Insert M new elements with zero value after an element

with the order number K.

Array106. Given an array of N real numbers, double occurrences of elements with

even order numbers (2, 4, …). Do not use conditional statements in loops.

Array107. Given an array of N real numbers, triple occurrences of elements with odd

order numbers (1, 3, …). Do not use conditional statements in loops.

Array108. Given an array of N real numbers, insert an element with zero value

before each element with positive value.

Array109. Given an array of N real numbers, insert an element with zero value after

each element with negative value.

Array110. Given an array of N integers, double occurrences of all elements whose

values are even numbers.

Array111. Given an array of N integers, triple occurrences of all elements whose

values are odd numbers.

Array112. An array A of N (≤ 6) real numbers is given. Sort the array in ascending

order by using the exchange sort method (the bubble sorting): compare each

pair of two adjacent elements (A1 and A2, A2 and A3, and so on) and exchange

their values in case the left element is greater than the right one; repeat N − 1

times such array pass. Output all array elements after each pass for checking

results. Note that the amount of analyzed pairs of the array elements can be

reduced by 1 after each pass.

Array113. An array A of N (≤ 6) real numbers is given. Sort the array in ascending

order by using the selection sort method: find the greatest element in the array

and exchange the values of the greatest element and the last element (with the

order number N); repeat N − 1 times this process, reducing the amount of

analyzed elements by 1 after each array pass. Output all array elements after

each pass for checking results.

Array114. An array A of N (≤ 6) real numbers is given. Sort the array in ascending

order by using the insertion sort method: compare an element A2 with the first

element A1 and exchange their values, if necessary, so that these elements were

in ascending order; then move an element A3 to the left (sorted) part of the

array, so that three elements were in ascending order; repeat this process for

other array elements. Output all array elements after processing of each

element (from A2 to AN). Note that it is convenient to assign the array element

being processed to an additional array element A0 (the barrier element).

Array115. An array A of N real numbers is given. Without changing the array A,

output the order numbers that correspond to array elements in ascending order

of their values. For solving the task create an additional index array I, which

contains order numbers in the range 1 to N, and use the bubble sorting (see

Array112) as follows: compare elements of array A (with the order numbers I1

and I2, I2 and I3, and so on) and exchange, if necessary, values of

53

corresponding elements of index array I. After repeating N − 1 times of such

array pass the required sequence of order numbers will be contained in the

array I.

12.6. Series of equal numbers

Array116. An array A of N integers is given. A group of successive array elements

with equal values is called a series of equal numbers, the amount of its

elements is called a length of series (a length of series may be equal to 1), the

value of its elements is called a value of series. Create and output two new

integer-valued arrays B and C containing respectively lengths and values of all

series of equal numbers of the array A.

Array117. Given an array of N integers, insert an element with zero value before

each series of equal numbers of the array (see the series definition in

Array116).

Array118. Given an array of N integers, insert an element with zero value after each

series of equal numbers of the array (see the series definition in Array116).

Array119. Given an array of N integers, increase each series of equal numbers of the

array by one element (see the series definition in Array116).

Array120. An array of N integers is given. The array contains at least one series of

two or more equal numbers. Decrease each series of equal numbers of the

array by one element (see the series definition in Array116).

Array121. An integer K (> 0) and an array of N integers are given. Double the length

of the K-th series of equal numbers of the array (see the series definition in

Array116). If the array contains less than K series then do not change it.

Array122. An integer K (> 1) and an array of N integers are given. Remove the K-th

series of equal numbers from the array (see the series definition in Array116).

If the array contains less than K series then do not change it.

Array123. An integer K (> 1) and an array of N integers are given. Exchange the first

and the K-th series of equal numbers of the array (see the series definition in

Array116). If the array contains less than K series then do not change it.

Array124. An integer K (> 1) and an array of N integers are given. Exchange the last

and the K-th series of equal numbers of the array (see the series definition in

Array116). If the array contains less than K series then do not change it.

Array125. An integer L (> 1) and an array of N integers are given. Replace each

series, whose length is less than L, by one element with zero value (see the

series definition in Array116).

Array126. An integer L (> 0) and an array of N integers are given. Replace each

series, whose length is equal to L, by one element with zero value (see the

series definition in Array116).

54

Array127. An integer L (> 0) and an array of N integers are given. Replace each

series, whose length is greater than L, by one element with zero value (see the

series definition in Array116).

Array128. Given an array of N integers, increase its first series of the maximal length

by one element (see the series definition in Array116).

Array129. Given an array of N integers, increase its last series of the maximal length

by one element (see the series definition in Array116).

Array130. Given an array of N integers, increase all its series of the maximal length

by one element (see the series definition in Array116).

12.7. Sets of points

Each set of points must be stored either in two arrays of numbers (the first

array stores x-coordinates, the second one stores y-coordinates) or in one array of

records with two fields x and y.

Array131. A set A of N points in the coordinate plane and a point B are given (all

points are determined by their coordinates x, y). Find the point of A that is the

nearest to the point B. The distance R between two points with the coordinates

(x1, y1) and (x2, y2) may be found by formula:

R = ((x2 − x1)
2
 + (y2 − y1)

2
)

1/2
.

Array132. A set A of N points in the coordinate plane is given (points are determined

by their coordinates x, y). Find the point of A that lies in the second coordinate

quarter and is the farthest from the origin. If the set A does not contain such

points then output the origin (0, 0).

Array133. A set A of N points in the coordinate plane is given (points are determined

by their coordinates x, y). Find the point of A that lies in the first or the third

coordinate quarter and is the nearest to the origin. If the set A does not contain

such points then output the origin (0, 0).

Array134. A set A of N points in the coordinate plane is given (points are determined

by their coordinates x, y). Find two points of A with the maximal distance

between them and output these points (in ascending order of their indices in

the set A) and the value of the distance.

Array135. Two sets A and B of N1 and N2 points respectively are given (points are

determined by their coordinates x, y). Find the point of A and the point of B

with the minimal distance between them. Output the value of the distance and

then the point of A and the point of B.

Array136. A set A of N points in the coordinate plane is given (N > 2, points are

determined by their coordinates x, y). Find the point of A such that the sum of

distances between this point and other points of A is minimal and output this

point and the corresponding sum.

Array137. A set A of N points in the coordinate plane is given (N > 2, points are

determined by their coordinates x, y). Find the maximal perimeter of a triangle

55

with vertices belonging to A. Output this perimeter and the corresponding

vertices (in ascending order of their indices in the set A).

Array138. A set A of N points in the coordinate plane is given (N > 2, points are

determined by their coordinates x, y). Find the minimal perimeter of a triangle

with vertices belonging to A. Output this perimeter and the corresponding

vertices (in ascending order of their indices in the set A).

Array139. A set A of N points with integer-valued coordinates x, y is given. The

order in the plane is defined as follows:

(x1, y1) < (x2, y2), if either x1 < x2 or x1 = x2 and y1 < y2.

Using this order definition, rearrange points of A in ascending order.

Array140. A set A of N points with integer-valued coordinates x, y is given. The

order in the plane is defined as follows:

(x1, y1) < (x2, y2), if either x1 + y1 < x2 + y2 or x1 + y1 = x2 + y2 and x1 < x2.

Using this order definition, rearrange points of A in descending order.

13. Two-dimensional arrays (matrices)

The condition ―An M × N matrix of integers (or real numbers) is given‖ means

that the actual size of a two-dimensional array and all its elements are given (M is the

number of rows and N is the number of columns, the matrix has M·N elements). The

amount of rows (columns) of any matrix is assumed to be in the range 2 to 10 if the

task does not specify it explicitly. The order number of the first row (column) of

matrix is assumed to be equal to 1, the element AI,J is assumed to be in the I-th row

and J-th column (I = 1, …, M, J = 1, …, N). An input/output of matrix elements must

be performed in the order of rows, that is, in ascending order of their indices with the

second index (the column index) changing faster than the first one (the row index).

A matrix having the size M × M is called a square matrix of order M; the

actual size of square matrix is defined by one integer M.

If a task connected with matrix creation or matrix changing does not specify

output data then the resulting matrix elements are supposed to be output (by rows).

13.1. Matrix creation

The size of a resulting matrix is assumed to be not greater than 10 × 10 in all

tasks connected with the matrix creation.

Matrix1. Given two positive integers M and N, create and output an M × N matrix of

integers such that all its elements of the I-th row are equal to 10·I

(I = 1, …, M).

Matrix2. Given two positive integers M and N, create and output an M × N matrix of

integers such that all its elements of the J-th column are equal to 5·J

(J = 1, …, N).

56

Matrix3. Two positive integers M, N and a sequence of M real numbers are given.

Create and output an M × N matrix of real numbers such that each of its

columns contains all numbers from the given sequence (in the same order).

Matrix4. Two positive integers M, N and a sequence of M real numbers are given.

Create and output an M × N matrix of real numbers such that each of its rows

contains all numbers from the given sequence (in the same order).

Matrix5. Two positive integers M and N, a real number D, and a sequence of M real

numbers are given. Create and output an M × N matrix of real numbers such

that its first column contains all numbers from the given sequence (in the same

order), and elements of each next column are equal to the sum of the

corresponding element of the previous column and the number D (so each row

of the matrix will be an arithmetic sequence with the common difference D).

Matrix6. Two positive integers M and N, a real number D, and a sequence of M real

numbers are given. Create and output an M × N matrix of real numbers such

that its first row contains all numbers from the given sequence (in the same

order), and elements of each next row are equal to the sum of the

corresponding element of the previous row and the number R (so each column

of the matrix will be a geometric sequence with the common ratio R).

13.2. Output of matrix elements

Matrix7. An M × N matrix of real numbers and an integer K are given (1 ≤ K ≤ M).

Output elements of the matrix row with the order number K.

Matrix8. An M × N matrix of real numbers and an integer K are given (1 ≤ K ≤ M).

Output elements of the matrix column with the order number K.

Matrix9. An M × N matrix of real numbers is given. Output elements of its rows with

even order numbers (2, 4, …). An output of matrix elements must be

performed in the order of rows. Do not use conditional statements.

Matrix10. An M × N matrix of real numbers is given. Output elements of its columns

with odd order numbers (1, 3, …). An output of matrix elements must be

performed in the order of columns. Do not use conditional statements.

Matrix11. An M × N matrix of real numbers is given. Output elements of the matrix

in the following order: the first row from left to right, the second row from

right to left, the third row from left to right, the fourth row from right to left,

and so on.

Matrix12. An M × N matrix of real numbers is given. Output elements of the matrix

in the following order: the first column from up to down, the second column

from down to up, the third column from up to down, the fourth column from

down to up, and so on.

Matrix13. A real-valued square matrix A of order M is given. Starting with the

element A1,1, output its elements as follows: all elements of the first row, all

elements of the M-th column except the element A1,M (which is already output),

all remaining elements of the second row, all remaining elements of the

57

(M−1)-th column, and so on; the element AM,1 must be output in the end. All

rows must be output from left to right, all columns must be output from up to

down.

Matrix14. A real-valued square matrix A of order M is given. Starting with the

element A1,1, output its elements as follows: all elements of the first column, all

elements of the M-th row except the element AM,1 (which is already output), all

remaining elements of the second column, all remaining elements of the

(M−1)-th row, and so on; the element A1,M must be output in the end. All rows

must be output from left to right, all columns must be output from up to down.

Matrix15. A real-valued square matrix A of order M is given (M is an odd number).

Starting with the element A1,1 and moving clockwise, output all matrix

elements in the spiral order: the first row from left to right, the last column

from up to down, the last row from right to left, the first column from down to

up, all remaining elements of the second row (from left to right), and so on; the

central element of the matrix must be output in the end.

Matrix16. A real-valued square matrix A of order M is given (M is an odd number).

Starting with the element A1,1 and moving counter-clockwise, output all matrix

elements in the spiral order: the first column from up to down, the last row

from left to right, the last column from down to up, the first row from right to

left, all remaining elements of the second column (from up to down), and so

on; the central element of the matrix must be output in the end.

13.3. Analysis of matrix elements

Matrix17. An M × N matrix of real numbers and an integer K are given (1 ≤ K ≤ M).

Find the sum and the product of elements of the matrix row with the order

number K.

Matrix18. An M × N matrix of real numbers and an integer K are given (1 ≤ K ≤ N).

Find the sum and the product of elements of the matrix column with the order

number K.

Matrix19. An M × N matrix of real numbers is given. Find the sum of elements for

each matrix row.

Matrix20. An M × N matrix of real numbers is given. Find the product of elements

for each matrix column.

Matrix21. An M × N matrix of real numbers is given. Find the average of elements

for each matrix row with odd order number (1, 3, …). Do not use conditional

statements.

Matrix22. An M × N matrix of real numbers is given. Find the sum of elements for

each matrix column with even order number (2, 4, …). Do not use conditional

statements.

Matrix23. An M × N matrix of real numbers is given. Find the minimal element for

each matrix row.

58

Matrix24. An M × N matrix of real numbers is given. Find the maximal element for

each matrix column.

Matrix25. An M × N matrix of real numbers is given. Find the order number of the

matrix row with the maximal sum of elements. Output this order number and

the maximal sum value.

Matrix26. An M × N matrix of real numbers is given. Find the order number of the

matrix column with the minimal product of elements. Output this order

number and the minimal product value.

Matrix27. An M × N matrix of real numbers is given. Find the maximal value among

the minimal elements of matrix rows.

Matrix28. An M × N matrix of real numbers is given. Find the minimal value among

the maximal elements of matrix columns.

Matrix29. An M × N matrix of real numbers is given. For each matrix row find the

amount of elements that are smaller than the average of all elements of this

row.

Matrix30. An M × N matrix of real numbers is given. For each matrix column find

the amount of elements that are greater than the average of all elements of this

column.

Matrix31. An M × N matrix of real numbers is given. Find the order numbers of row

and column for an element whose value is the closest to the average of all

matrix elements.

Matrix32. An M × N matrix of integers is given. Find the order number of the first

matrix row that contains the equal amount of positive and negative elements

(zero elements are not considered). If the matrix does not contain the required

rows then output 0.

Matrix33. An M × N matrix of integers is given. Find the order number of the last

matrix column that contains the equal amount of positive and negative

elements (zero elements are not considered). If the matrix does not contain the

required columns then output 0.

Matrix34. An M × N matrix of integers is given. Find the order number of the last

matrix row that contains even numbers only. If the matrix does not contain the

required rows then output 0.

Matrix35. An M × N matrix of integers is given. Find the order number of the first

matrix column that contains odd numbers only. If the matrix does not contain

the required columns then output 0.

Matrix36. An M × N matrix of integers is given, values of its elements are in the

range 0 to 100. A matrix row is called the similar with the other row if these

rows contain the same set of numbers. For example, rows (1, 3, 3, 2) and (2, 2,

1, 3) contain the same set {1, 2, 3} and therefore they are the similar rows.

Find the amount of matrix rows that are the similar with the first row.

59

Matrix37. An M × N matrix of integers is given, values of its elements are in the

range 0 to 100. A matrix column is called the similar with the other column if

these columns contain the same set of numbers. For example, columns (1, 3,

3, 2) and (2, 2, 1, 3) contain the same set {1, 2, 3} and therefore they are the

similar columns. Find the amount of matrix columns that are the similar with

the last column.

Matrix38. An M × N matrix of integers is given. Find the amount of its rows that

contain no elements with equal values.

Matrix39. An M × N matrix of integers is given. Find the amount of its columns that

contain no elements with equal values.

Matrix40. An M × N matrix of integers is given. Find the order number of the last

row that contains the maximal amount of elements with equal values.

Matrix41. An M × N matrix of integers is given. Find the order number of the first

column that contains the maximal amount of elements with equal values.

Matrix42. An M × N matrix of real numbers is given. Find the amount of its rows

whose values of elements are sorted in ascending order.

Matrix43. An M × N matrix of real numbers is given. Find the amount of its columns

whose values of elements are sorted in descending order.

Matrix44. An M × N matrix of real numbers is given. Find minimal element among

elements of all matrix rows whose values of elements are sorted in ascending

or descending order. If the matrix does not contain the required rows then

output 0 (as a real number).

Matrix45. An M × N matrix of real numbers is given. Find maximal element among

elements of all matrix columns whose values of elements are sorted in

ascending or descending order. If the matrix does not contain the required

columns then output 0 (as a real number).

Matrix46. An M × N matrix of integers is given. Find the matrix element that is the

maximum in its row and the minimum in its column. If the matrix does not

contain such elements then output 0.

13.4. Matrix changing

Matrix47. An M × N matrix of real numbers and two integers K1, K2 are given

(1 ≤ K1 < K2 ≤ M). Exchange matrix rows with the order numbers K1 and K2.

Matrix48. An M × N matrix of real numbers and two integers K1, K2 are given

(1 ≤ K1 < K2 ≤ N). Exchange matrix columns with the order numbers K1

and K2.

Matrix49. An M × N matrix of real numbers is given. For each matrix row exchange

values of its minimal and maximal element.

Matrix50. An M × N matrix of real numbers is given. For each matrix column

exchange values of its minimal and maximal element.

60

Matrix51. An M × N matrix of real numbers is given. Exchange matrix rows

containing the minimal and the maximal element of the matrix.

Matrix52. An M × N matrix of real numbers is given. Exchange matrix columns

containing the minimal and the maximal element of the matrix.

Matrix53. An M × N matrix of real numbers is given. Exchange the column with the

order number 1 and the last column that contains positive numbers only. If the

matrix does not contain the required columns then do not change it.

Matrix54. An M × N matrix of real numbers is given. Exchange the column with the

order number N and the first column that contains negative numbers only. If

the matrix does not contain the required columns then do not change it.

Matrix55. An M × N matrix of real numbers is given (M is an even number).

Exchange the upper and lower half of the matrix.

Matrix56. An M × N matrix of real numbers is given (N is an even number).

Exchange the left and right half of the matrix.

Matrix57. An M × N matrix of real numbers is given (M and N are even numbers).

Exchange the upper left and lower right quarter of the matrix.

Matrix58. An M × N matrix of real numbers is given (M and N are even numbers).

Exchange the upper right and lower left quarter of the matrix.

Matrix59. An M × N matrix of real numbers is given. Reflect its elements about the

horizontal axis of symmetry of the matrix (that is, exchange matrix rows with

the order numbers 1 and M, 2 and M − 1, and so on).

Matrix60. An M × N matrix of real numbers is given. Reflect its elements about the

vertical axis of symmetry of the matrix (that is, exchange matrix columns with

the order numbers 1 and N, 2 and N − 1, and so on).

Matrix61. An M × N matrix of real numbers and an integer K are given (1 ≤ K ≤ M).

Remove the matrix row with the order number K.

Matrix62. An M × N matrix of real numbers and an integer K are given (1 ≤ K ≤ N).

Remove the matrix column with the order number K.

Matrix63. An M × N matrix of real numbers is given. Remove the matrix row that

contains the minimal matrix element.

Matrix64. An M × N matrix of real numbers is given. Remove the matrix column that

contains the maximal matrix element.

Matrix65. An M × N matrix of real numbers is given. Remove its first column that

contains positive numbers only. If the matrix does not contain the required

columns then do not change it.

Matrix66. An M × N matrix of real numbers is given. Remove its last column that

contains negative numbers only. If the matrix does not contain the required

columns then do not change it.

Matrix67. An M × N matrix of real numbers is given. The matrix contains both

positive and negative numbers. Remove all matrix columns that contain

61

positive numbers only. If the matrix does not contain the required columns

then do not change it.

Matrix68. An M × N matrix of real numbers and an integer K are given (1 ≤ K ≤ M).

Insert a new row of elements with zero value before the matrix row with the

order number K.

Matrix69. An M × N matrix of real numbers and an integer K are given (1 ≤ K ≤ N).

Insert a new column of elements with the value 1 after the matrix column with

the order number K.

Matrix70. An M × N matrix of real numbers is given. Double the occurrence of the

matrix row that contains the maximal matrix element.

Matrix71. An M × N matrix of real numbers is given. Double the occurrence of the

matrix column that contains the minimal matrix element.

Matrix72. An M × N matrix of real numbers is given. Insert a new column of

elements with the value 1 before the first matrix column that contains positive

numbers only. If the matrix does not contain the required columns then do not

change it.

Matrix73. An M × N matrix of real numbers is given. Insert a new column of

elements with zero value after the last matrix column that contains negative

numbers only. If the matrix does not contain the required columns then do not

change it.

Matrix74. An M × N matrix of real numbers is given. A matrix element is called the

local minimum if it is smaller than all its neighbors. Replace all local

minimums of the matrix by zero values. An additional matrix may be used for

performing the required replacement.

Matrix75. An M × N matrix of real numbers is given. A matrix element is called the

local maximum if it is greater than all its neighbors. Replace values of all local

maximums of the matrix by opposite values. An additional matrix may be used

for performing the required replacement.

Matrix76. An M × N matrix of real numbers is given. Rearrange the matrix rows so

that values of their first elements were in ascending order.

Matrix77. An M × N matrix of real numbers is given. Rearrange the matrix columns

so that values of their last elements were in descending order.

Matrix78. An M × N matrix of real numbers is given. Rearrange the matrix rows so

that minimal values of their elements were in descending order.

Matrix79. An M × N matrix of real numbers is given. Rearrange the matrix columns

so that maximal values of their elements were in ascending order.

13.5. Diagonals of a square matrix

Matrix80. A real-valued square matrix A of order M is given. Find the sum of

elements of its main diagonal:

A1,1, A2,2, A3,3, …, AM,M.

62

Matrix81. A real-valued square matrix A of order M is given. Find the average of

elements of its secondary diagonal:

A1,M, A2,M−1, A3,M−2, …, AM,1.

Matrix82. A real-valued square matrix A of order M is given. Find the sum of

elements of each matrix diagonal that is parallel to the main diagonal. Begin

with the single-element diagonal A1,M.

Matrix83. A real-valued square matrix A of order M is given. Find the sum of

elements of each matrix diagonal that is parallel to the secondary diagonal.

Begin with the single-element diagonal A1,1.

Matrix84. A real-valued square matrix A of order M is given. Find the average of

elements of each matrix diagonal that is parallel to the main diagonal. Begin

with the single-element diagonal A1,M.

Matrix85. A real-valued square matrix A of order M is given. Find the average of

elements of each matrix diagonal that is parallel to the secondary diagonal.

Begin with the single-element diagonal A1,1.

Matrix86. A real-valued square matrix A of order M is given. Find the minimal value

of elements of each matrix diagonal that is parallel to the main diagonal. Begin

with the single-element diagonal A1,M.

Matrix87. A real-valued square matrix A of order M is given. Find the maximal value

of elements of each matrix diagonal that is parallel to the secondary diagonal.

Begin with the single-element diagonal A1,1.

Matrix88. A real-valued square matrix of order M is given. Assign zero value to the

matrix elements that lie below the main diagonal. Do not use conditional

statements.

Matrix89. A real-valued square matrix of order M is given. Assign zero value to the

matrix elements that lie above the secondary diagonal. Do not use conditional

statements.

Matrix90. A real-valued square matrix of order M is given. Assign zero value to the

matrix elements that lie on the secondary diagonal or below it. Do not use

conditional statements.

Matrix91. A real-valued square matrix of order M is given. Assign zero value to the

matrix elements that lie on the main diagonal or above it. Do not use

conditional statements.

Matrix92. A real-valued square matrix of order M is given. Assign zero value to the

matrix elements that lie above the main diagonal and above the secondary

diagonal simultaneously. Do not use conditional statements.

Matrix93. A real-valued square matrix of order M is given. Assign zero value to the

matrix elements that lie above the main diagonal and below the secondary

diagonal simultaneously. Do not use conditional statements.

Matrix94. A real-valued square matrix of order M is given. Assign zero value to the

matrix elements that lie below the main diagonal (or on it) and above the

63

secondary diagonal (or on it) simultaneously. Do not use conditional

statements.

Matrix95. A real-valued square matrix of order M is given. Assign zero value to the

matrix elements that lie below the main diagonal (or on it) and below the

secondary diagonal (or on it) simultaneously. Do not use conditional

statements.

Matrix96. A real-valued square matrix A of order M is given. Reflect its elements

about the main diagonal (that is, exchange values of matrix elements A1,2

and A2,1, A1,3 and A3,1, and so on). Do not use an additional matrix.

Matrix97. A real-valued square matrix A of order M is given. Reflect its elements

about the secondary diagonal (that is, exchange values of matrix elements A1,1

and AM,M, A1,2 and AM−1,M, and so on). Do not use an additional matrix.

Matrix98. A real-valued square matrix A of order M is given. Rotate its elements by

180° (that is, exchange values of matrix elements A1,1 and AM,M, A1,2

and AM,M−1, and so on). Do not use an additional matrix.

Matrix99. A real-valued square matrix A of order M is given. Rotate its elements

counter-clockwise by 90° (that is, assign an initial value of A1,1 to AM,1, an

initial value of AM,1 to AM,M, and so on). Do not use an additional matrix.

Matrix100. A real-valued square matrix A of order M is given. Rotate its elements

clockwise by 90° (that is, assign an initial value of A1,1 to A1,M, an initial value

of A1,M to AM,M, and so on). Do not use an additional matrix.

14. Characters and strings

14.1. Basic operations

All input strings are assumed to contain no overlapping occurrences of a

required substring in the tasks connected with search and replacement. Furthermore,

substring removing (in String32 and String35) or substring replacement (in String38)

do not lead to new occurrences of this substring in the given string.

String1. Given a character C, output its numeric value in the character set.

String2. Given an integer N (32 ≤ N ≤ 126), output a character with the numeric

value N in the character set.

String3. Given a character C, output two characters: the first character precedes C in

the character set, the second one follows C in the character set.

String4. Given an integer N (1 ≤ N ≤ 26), output N first capital (that is, uppercase)

letters of the English alphabet (―A‖, ―B‖, ―C‖, and so on).

String5. Given an integer N (1 ≤ N ≤ 26), output N last small (that is, lowercase)

letters of the English alphabet in inverse order (―z‖, ―y‖, ―x‖, and so on).

String6. A character C representing a digit or a letter of the Latin alphabet is given. If

C is a digit then output the string ―digit‖, if C is a capital letter then output the

string ―capital‖, otherwise output the string ―small‖.

64

String7. Given a nonempty string, output numeric values of its first and last character

in the character set.

String8. Given an integer N (> 0) and a character C, output a string that is of length N

and contains characters C.

String9. Given an even integer N (> 0) and two characters C1, C2, output a string that

is of length N, begins with C1, and contains alternating characters C1 and C2.

String10. Given a string, output a new string that contains the given string characters

in inverse order.

String11. Given a nonempty string, output a new string that contains the given string

characters separated by a blank character.

String12. Given a nonempty string and an integer N (> 0), output a new string that

contains the given string characters separated by N characters ―*‖.

String13. Given a string, find the amount of digits in the string.

String14. Given a string, find the amount of Latin capital letters in the string.

String15. Given a string, find the amount of Latin letters in the string.

String16. Given a string, convert all Latin capital letters of the string to lowercase.

String17. Given a string, convert all Latin small letters of the string to uppercase.

String18. Given a string, convert all Latin capital letters of the string to lowercase

and all Latin small letters of the string to uppercase.

String19. A string is given. If the string represents an integer then output 1, if the

string represents a real number (with nonzero fractional part) then output 2,

otherwise output 0. A fractional part of a real number is preceded by the

decimal point ―.‖.

String20. Given a positive integer, output all digit characters in the decimal

representation of the integer (from left to right).

String21. Given a positive integer, output all digit characters in the decimal

representation of the integer (from right to left).

String22. Given a string that represents a positive integer, output the sum of digits of

this integer.

String23. Given a string that represents an arithmetic expression of the form

―<digit>±< digit>±…±<digit>― with operators ―+‖ and ―−‖ only (for example,

―4+7−2−8‖), output the value of given expression as an integer.

String24. Given a string with the binary representation of a positive integer, output a

new string with the decimal representation of this integer.

String25. Given a string with the decimal representation of a positive integer, output

a new string with the binary representation of this integer.

String26. An integer N (> 0) and a string S are given. Transform the string S to a new

string of length N as follows: if the length of S is greater than N then remove

its first characters, if the length of S is less than N then add characters ―.‖ to the

beginning of S.

65

String27. Two positive integers N1, N2 and two strings S1, S2 are given. Output new

string that contains N1 first characters of the string S1 and N2 last characters of

the string S2 (in that order).

String28. Given a character C and a string S, double each occurrence of the

character C in the string S.

String29. Given a character C and two strings S, S0, insert the string S0 into the

string S before each occurrence of the character C.

String30. Given a character C and two strings S, S0, insert the string S0 into the

string S after each occurrence of the character C.

String31. Two strings S, S0 are given. If the string S0 is a substring of S then output

True, otherwise output False.

String32. Two strings S, S0 are given. Find the amount of occurrences of S0 in the

string S.

String33. Two strings S, S0 are given. Remove the first occurrence of S0 from the

string S. If the string S does not contain required substrings then do not change

it.

String34. Two strings S, S0 are given. Remove the last occurrence of S0 from the

string S. If the string S does not contain required substrings then do not change

it.

String35. Two strings S, S0 are given. Remove all occurrences of S0 from the

string S. If the string S does not contain required substrings then do not change

it.

String36. Three strings S, S1, S2 are given. Replace the first occurrence of S1 in the

string S by the string S2.

String37. Three strings S, S1, S2 are given. Replace the last occurrence of S1 in the

string S by the string S2.

String38. Three strings S, S1, S2 are given. Replace all occurrences of S1 in the

string S by the string S2.

String39. A string with at least one blank character is given. Output the substring

of S that contains all characters between the first and the second blank

character. If the string S contains only one blank character then output an

empty string.

String40. A string with at least one blank character is given. Output the substring

of S that contains all characters between the first and the last blank character. If

the string S contains only one blank character then output an empty string.

14.2. Word processing

In this subgroup of tasks all input strings are assumed to be nonempty and

without leading and trailing blank characters.

String41. A string that contains English words separated by one or more blank

characters is given. Find the amount of words in the string.

66

String42. A string that contains English words separated by one or more blank

characters is given. All string letters are in uppercase. Find the amount of

words whose first letter is coincides with the last one.

String43. A string that contains English words separated by one or more blank

characters is given. All string letters are in uppercase. Find the amount of

words containing at least one letter ―E‖.

String44. A string that contains English words separated by one or more blank

characters is given. All string letters are in uppercase. Find the amount of

words containing exactly three letters ―E‖.

String45. A string that contains English words separated by one or more blank

characters is given. Find the length of the shortest word.

String46. A string that contains English words separated by one or more blank

characters is given. Find the length of the longest word.

String47. A string that contains English words separated by one or more blank

characters is given. Output a new string that contains the given words (in the

same order) separated by one character ―.‖.

String48. A string that contains English words separated by one or more blank

characters is given. All string letters are in uppercase. Process each word as

follows: replace all next occurrences of its first letter by the character ―.‖ (for

example, the word ―MINIMUM‖ must be transformed into ―MINI.U.‖). Do

not change blank characters in the string.

String49. A string that contains English words separated by one or more blank

characters is given. All string letters are in uppercase. Process each word as

follows: replace all previous occurrences of its last letter by the character ―.‖

(for example, the word ―MINIMUM‖ must be transformed into ―.INI.UM‖).

Do not change blank characters in the string.

String50. A string that contains English words separated by one or more blank

characters is given. Output a new string that contains the given words in

inverse order. The words must be separated by one blank character.

String51. A string that contains English words separated by one or more blank

characters is given. All string letters are in uppercase. Output a new string that

contains the given words in alphabetic order. The words must be separated by

one blank character.

String52. A string with an English sentence is given. Convert the first letter of each

word to uppercase. A word is defined as a character sequence that does not

contain blank characters and is bounded by blank characters or the string

beginning/end. If the first word character is not a letter then do not change this

word.

String53. A string with an English sentence is given. Find the amount of punctuation

marks in the string.

67

String54. A string with an English sentence is given. Find the amount of vowels

(―a‖, ―i‖, ―e‖, ―o‖, ―u‖) in the string.

String55. A string with an English sentence is given. Output the longest word in the

string. If there are several words of the maximal length then output the first

one. A word is defined as a character sequence that does not contain blank

characters, punctuation marks and is bounded by blank characters, punctuation

marks or the string beginning/end.

String56. A string with an English sentence is given. Output the shortest word in the

string. If there are several words of the maximal length then output the last

one. A word is defined as a character sequence that does not contain blank

characters, punctuation marks and is bounded by blank characters, punctuation

marks or the string beginning/end.

String57. A string with an English sentence is given. Remove all superfluous blank

characters in the string, so that its words were separated by exactly one blank

character.

14.3. Additional tasks

String58. A string that contains a fully qualified path name (that is, the drive and

directory parts, the file name and extension) is given. Extract the file name

(without the path and extension) from the string.

String59. A string that contains a fully qualified path name (that is, the drive and

directory parts, the file name and extension) is given. Extract the extension

(without the preceding dot character) from the string.

String60. A string that contains a fully qualified path name (that is, the drive and

directory parts, the file name and extension) is given. Extract the first directory

name (without backslashes ―\‖) from the string. If the file with the given name

is located in the root directory then output a backslash.

String61. A string that contains a fully qualified path name (that is, the drive and

directory parts, the file name and extension) is given. Extract the last directory

name (without backslashes ―\‖) from the string. If the file with the given name

is located in the root directory then output a backslash.

String62. A string with an English sentence is given. Encrypt the string using the

right cyclic shift of any letter by one position of the English alphabet (for

instance, the letter ―A‖ is encoded by the letter ―B‖, ―a‖ is encoded by ―b‖,

―B‖ is encoded by ―C‖, ―z‖ is encoded by ―a‖, and so on). Do not change blank

characters and punctuation marks.

String63. A string with an English sentence and an integer K (0 < K < 10) are given.

Encrypt the string using the right cyclic shift of any letter by K positions of the

English alphabet (for instance, if K = 2 then the letter ―A‖ is encoded by the

letter ―C‖, ―a‖ is encoded by ―c‖, ―B‖ is encoded by ―D‖, ―z‖ is encoded by

―b‖, and so on). Do not change blank characters and punctuation marks.

68

String64. A string with an encrypted English sentence and an integer K (0 < K < 10)

are given. The string is encrypted by means of the right cyclic shift of any

letter by K positions of the English alphabet (see String63). Decrypt the given

string.

String65. A string with an encrypted English sentence and its decrypted first

character C are given (the character C is always an English letter). The string is

encrypted by means of the right cyclic shift of any letter by K positions of the

English alphabet (see String63). Find the number K and decrypt the given

string.

String66. A string with an English sentence is given. Encrypt the string by moving

all characters that are at the string positions with even numbers (2, 4, …) to the

beginning of the string (in the same order) and moving all characters that are at

the string positions with odd numbers (1, 3, …) to the end of the string (in

inverse order). For instance, the string ―Program‖ must be encrypted to

―rgamroP‖.

String67. A string with an encrypted English sentence is given (the method of

encryption is described in String66). Decrypt the string.

String68. A string that contains digits and Latin small letters is given. If letters of the

string are in alphabetic order then output 0, otherwise output the order number

of the first string character that is a letter and breaks the required order.

String69. A string that contains Latin letters and parentheses ―(―, ―)‖ is given. If

parentheses are in correct order (that is, each closing parenthesis ‖)‖

corresponds to an opening one ―(―) then output 0. If the string contains illegal

parentheses ―)‖ then output the order number of the first string character that is

an illegal ―)‖. If the amount of closing parentheses is less than the amount of

opening ones then output −1.

String70. A string that contains Latin letters and brackets of three types

(parentheses ‖()‖, square brackets ‖[]‖, braces ―{}‖) is given. If brackets are in

correct order (that is, each closing bracket corresponds to an opening one of

the same type) then output 0. If the string contains illegal closing brackets then

output the order number of the first string character that is an illegal closing

bracket. If the amount of closing brackets is less than the amount of opening

ones then output −1.

15. Binary files

The binary file is a file that contains elements of the same type in the binary

format.

In Pascal, such files are called typed files and should be declared as file of

<element type>.

In Visual Basic, such files are called random access files and should be

declared with the Random attribute.

69

In C++, binary files should be opened in the ios_base::binary mode; the read

and write operations for binary files are implemented by the read and write methods

with the ((char *)&x, sizeof(x)) parameters, where the x variable has a type that

matches the type of file elements.

In .NET languages, binary files should be processed with using the FileStream,

BinaryReader, and BinaryWriter classes.

In Python and Ruby, binary files should be opened with the b attribute of the

file access mode, for example, "rb" provides for opening existing binary file in read

mode, "wb" provides for creation binary file and opening this file in write mode,

"r+b" — provides for opening existing binary file in read and write mode. Use the

unpack and pack methods while processing files with data of numerical types (in

Python, these methods are defined in the struct module).

In Java, binary files should be processed with using the RandomAccessFile

class.

The condition ―A file of integers (real numbers, characters, strings) is given‖

means that the file name is given (as a string input data) and the corresponding file

exists and is located in the working directory. In some tasks it is necessary to check

the file existence; this task condition is pointed out explicitly. File components must

be read using standard input procedures (or functions) of the programming language

being used.

If the task requires to create a new file then the new file name is included in

the input data set; this name is usually the last element of input data. Standard output

procedures (or functions) of the programming language must be used for writing data

to files.

The size of a typed file always means the amount of file components of the

corresponding type. File components are assumed to be numbered beginning with 1.

The minimal size of any input file is assumed to be 2 (that is, any file contains

at least two components), if the task does not specify it explicitly. The maximal file

size is not fixed, so auxiliary arrays should not be used to store all file components

but one may use temporary files.

15.1. Basic operations

File1. A string S is given. If the string S is an admissible name of file then create an

empty file called S and output True. If a file with the name S can not be created

then output False.

File2. A file name and an integer N (> 1) are given. Create a file of integers with the

given name and write N first positive even numbers (2, 4, …) to this file.

File3. A file name and two real numbers A, D are given. Create a file of real numbers

with the given name and write 10 first terms of an arithmetic sequence with

the first term A and the common difference D (A, A + D, A + 2·D, …, A + 9·D)

to this file.

File4. Four file names are given. Find the amount of files with the given names that

are located in the working directory.

70

File5. A name of file of integers is given. Find the amount of the file components. If

a file with the given name does not exist then output −1.

File6. An integer K and a file of nonnegative integers are given. Output the file

component with the order number K (file components are numbered beginning

with 1). If the file does not contain a component with the required number then

output −1.

File7. Given a file of integers that contains at least four components, output its

components with the order numbers 1, 2, N−1, N, where N is the amount of the

file components.

File8. Two names of files of real numbers are given. It is known that the first file

exists and is nonempty whereas the second file is absent in the working

directory. Create the absent file and write the first and the last components of

the existing file (in that order) to the file that has been created.

File9. Two names of files of real numbers are given. It is known that one of these

files exists and is nonempty whereas the other file is absent in the working

directory. Create the absent file and write the last and the first components of

the existing file (in that order) to the file that has been created.

File10. A file of integers is given. Create a new file that contains all components of

the given file in inverse order.

File11. A file of real numbers is given. Create two new files; the first resulting file

must contain the given file components with odd order numbers (1, 3, …), the

second resulting file must contain the given file components with even order

numbers (2, 4, …).

File12. A file of integers is given. Create two new files; the first resulting file must

contain the given file components whose values are even numbers, the second

resulting file must contain the given file components whose values are odd

numbers. If the given file does not contain odd or even numbers then the

corresponding resulting file must be empty.

File13. A file of integers is given. Create two new files; the first resulting file must

contain the given file components (in inverse order) whose values are positive

numbers, the second resulting file must contain the given file components (in

inverse order too) whose values are negative numbers. If the given file does

not contain positive or negative numbers then the corresponding resulting file

must be empty.

File14. A file of real numbers is given. Find the average of its components.

File15. A file of real numbers is given. Find the sum of its components with even

order numbers.

File16. A file of integers is given. Find the amount of series of equal numbers that

are contained in the file (a series of equal numbers is defined as a set of

successive file components with equal values). For instance, if the file contains

components with values 1, 5, 5, 5, 4, 4, 5 then the number 4 must be output.

71

File17. A file of integers is given. Create a new file of integers that contains lengths

of all series of equal numbers from the given file (a series of equal numbers is

defined as a set of successive file components with equal values; the amount of

these components is called the length of series). For instance, if the given file

contains components with values 1, 5, 5, 5, 4, 4, 5 then the resulting file must

contain the following integers: 1, 3, 2, 1.

File18. A file of real numbers is given. Find its first local minimum (a file

component is called the local minimum if it is smaller than its neighbors).

File19. A file of real numbers is given. Find its last local maximum (a file component

is called the local maximum if it is greater than its neighbors).

File20. A file of real numbers is given. Find the total amount of its local extremums,

that is, its local maximums and local minimums (see the local minimum and

local maximum definitions in File18 and File19 respectively).

File21. A file of real numbers is given. Create a file of integers that contains order

numbers of all local maximums of the given file in ascending order (see the

local maximum definition in File19).

File22. A file of real numbers is given. Create a file of integers that contains order

numbers of all local extremums of the given file in descending order (see the

local extremum definition in File20).

File23. A file of real numbers is given. Create a file of integers that contains lengths

of all sets of successive file components whose values are in descending order.

For instance, if the given file contains components with values 1.7, 4.5, 3.4,

2.2, 8.5, 1.2 then the resulting file must contain the following integers: 3, 2.

File24. A file of real numbers is given. Create a file of integers that contains lengths

of all sets of successive file components whose values are in ascending or

descending order. For instance, if the given file contains components with

values 1.7, 4.5, 3.4, 2.2, 8.5, 1.2 then the resulting file must contain the

following integers: 2, 3, 2, 2.

File25. Given a file of real numbers, replace the values of all file components with

their squares.

File26. Given a file of real numbers, exchange values of its minimal and maximal

component.

File27. Given a file of integers with components A1, A2, …, AN (N is the amount of

the file components), change the order of the file components as follows:

A1, AN, A2, AN−1, A3, … .

File28. Given a file of real numbers, replace each file component (except for the first

and last one) with the average of this component and its neighbors.

File29. Given a file of integers that contains more than 50 components, reduce the

size of file to 50 components by means of removing last components.

File30. Given a file of integers that contains an even number of components, remove

the second half of the file components.

72

File31. Given a file of integers that contains more than 50 components, reduce the

size of file to 50 components by means of removing first components.

File32. Given a file of integers that contains an even number of components, remove

the first half of the file components.

File33. Given a file of integers, remove file components with even order numbers (2,

4, …).

File34. Given a file of integers, remove file components with negative values.

File35. Given a file of integers that contains less than 50 components, increase the

size of file up to 50 components by means of inserting zero components to the

beginning of the file.

File36. Given a file of integers, write all its components in the same order to the end

of this file (as a result, the size of file will be doubled).

File37. Given a file of integers, write all its components in inverse order to the end of

this file (as a result, the size of file will be doubled).

File38. Given a file of integers, double occurrences of file components with odd

order numbers.

File39. Given a file of integers, double occurrences of file components whose values

are in the range 5 to 10.

File40. Given a file of integers, replace each file component, whose order number is

an even number, with two zero components.

File41. Given a file of integers, replace each file component, whose value is a

positive number, with three zero components.

15.2. Untyped files processing

File42. Given two untyped files, exchange their contents.

File43. Given an untyped file and a string S, create the file copy called S.

File44. Given three untyped files of different size, replace the contents of the longest

file with the contents of the shortest one.

File45. Given three untyped files of different size, replace the contents of the shortest

file with the contents of the longest one.

File46. A string S0, an integer N (≤ 4), and N files called S1, …, SN are given.

Components of all given files have the identical type. Combine the contents of

the given files (in the same order) in a new file called S0.

File47. Given two files whose components have the identical type, add the initial

contents of the second file to the end of the first file and the initial contents of

the first file to the end of the second file.

73

15.3. Work with several numeric files. Archival files

File48. Three files of integers called SA, SB, SC and a string SD are given. All given

files are of the same size. Create a new file called SD; this file must contain

triples of components of the given files as follows:

A1, B1, C1, A2, B2, C2, … .

File49. Four files of integers called SA, SB, SC, SD and a string SE are given. The given

files are of different size. Create a new file called SE; this file must contain

quadruples of components of the given files as follows:

A1, B1, C1, D1, A2, B2, C2, D2, … .

Do not write ―superfluous‖ components of longer files to the resulting file.

File50. Two files of real numbers called S1, S2 and a string S3 are given. Values of

components of each given file are in ascending order. Create a new file

called S3; this file must contain all components of the given files in ascending

order of their values.

File51. Three files of real numbers called S1, S2, S3 and a string S4 are given. Values

of components of each given file are in descending order. Create a new file

called S4; this file must contain all components of the given files in descending

order of their values.

File52. A string S0, an integer N (≤ 4), and N files of integers called S1, …, SN are

given. Create a new file called S0; this file (an archival file) must contain data

of all given files in the following format: the number N (the first component of

the archival file), the amounts of components of each given file (the next

N components of the archival file), values of all components of the file S1 in

the same order, values of all components of the file S2 in the same order, and

so on.

File53. A string S, an integer N (> 0) and an archival file are given. The archival file

contains data of several files; the format of archival file is described in File52.

Restore the data of the N-th file from the archival file and save it in the file

called S. If the amount of files, which are contained in the archival file, is less

than N then the resulting file S must be empty.

File54. A string S and an archival file are given. The archival file contains data of

several (no more than six) files; the format of archival file is described in

File52. Find the average of all component values for each file, which is

contained in the archival file. Save all obtained averages (as a real numbers) in

a new file called S.

File55. A string S0, an integer N (≤ 4), and N files of integers called S1, …, SN are

given. Create a new file called S0; this file (an archival file) must contain data

of all given files in the following format: the amount of components of the

file S1 and values of all its components in the same order; the amount of

components of the file S2 and values of all its components in the same

order; …; the amount of components of the file SN and values of all its

components in the same order.

74

File56. A string S, an integer N (> 0) and an archival file are given. The archival file

contains data of several files; the format of archival file is described in File55.

Restore the data of the N-th file from the archival file and save it in the file

called S. If the amount of files, which are contained in the archival file, is less

than N then the resulting file S must be empty.

File57. Two strings S1, S2 and an archival file are given. The archival file contains

data of several files; the format of archival file is described in File55. Create

two new files called S1, S2; the first resulting file must contain first components

of all files, which are contained in the archival file, the second resulting file

must contain last components of all files, which are contained in the archival

file.

15.4. Files of characters and files of strings

A file of characters is a binary file whose components are characters. A file of

strings (or a string binary file) is a binary file whose components are strings of

characters. Unlike text files, files of strings can be opened in read/write access mode

(that is, allows both reading and writing), and their components can be accessed both

sequentially and randomly (by moving the current file position to a specified

component).

In Borland Delphi and Lazarus, variables for string binary files should be

declared as file of ShortString.

In Borland Delphi, Lazarus, and PascalABC.NET, variables for string binary

files should be declared as file of ShortString.

In Visual Basic, the components of a file of characters are assumed to have the

String * 1 type and the components of a string binary file are assumed to have the

String * 80 type in any task of Programming Taskbook.

In C++, the components of a string binary file are assumed to have the

char[80] type in any task of Programming Taskbook.

In .NET languages, Python, Java, and Ruby, string binary files are assumed to

contain left-aligned strings of length 80 in any task of Programming Taskbook

(therefore, you may need to use a method for removing right blank characters from

the string after reading it from a string binary file and a method for padding string by

blank characters before writing it to a string binary file).

In Java, you should use variables of type byte and byte[] to read/write

characters and strings from/to binary files. Use appropriate constructor of the String

class to convert bytes to string, use the getBytes method of the String class to convert

string to bytes.

File58. Given a file of characters containing at least one blank character, remove its

components that are located after the first blank character (including this blank

character).

File59. Given a file of characters containing at least one blank character, remove its

components that are located after the last blank character (including this blank

character).

75

File60. Given a file of characters containing at least one blank character, remove its

components that are located before the first blank character (including this

blank character).

File61. Given a file of characters containing at least one blank character, remove its

components that are located before the last blank character (including this

blank character).

File62. Given a file of characters, rearrange file components in ascending order of

their numeric values in the character set.

File63. An integer K (> 0) and a file of strings are given. Create two new files;

components of the first resulting file are strings that contain first K characters

of each string of the given file; components of the second resulting file are K-

th characters of each string of the given file. If the length of some string of the

given file is less than K then the entire string and a blank character must be

written to the first and second resulting file respectively.

File64. Given a file of strings, write its components of the minimal length to a new

file (in the same order).

File65. Given a file of strings, write its components of the maximal length to a new

file (in inverse order).

File66. Given a file of strings, write all its components to a new file in lexicographic

order (that is, in ascending order of the numeric values of their characters).

File67. A file of strings is given. The file contains dates in the ―day/month/year‖

format, the ―day‖ and ―month‖ fields contain two digits, the ―year‖ field

contains four digits (for example, ―16/04/2001‖). Create two new files and

write integer values of days and months for each date from the given file to the

first and second resulting file respectively (in the same order).

File68. A file of strings is given; the file contains dates in the ―day/month/year‖

format (see File67). Create two new files and write integer values of months

and years for each date from the given file to the first and second resulting file

respectively (in inverse order).

File69. A file of strings is given; the file contains dates in the ―day/month/year‖

format (see File67). Write its components that corresponds to summer dates to

a new file (in the same order). If the given file does not contain required dates

then the resulting file must be empty.

File70. A file of strings is given; the file contains dates in the ―day/month/year‖

format (see File67). Write its components that corresponds to winter dates to a

new file (in the same order). If the given file does not contain required dates

then the resulting file must be empty.

File71. A file of strings is given; the file contains dates in the ―day/month/year‖

format (see File67). Find its component that represents the earliest spring date.

If the given file does not contain spring dates then output an empty string.

76

File72. A file of strings is given; the file contains dates in the ―day/month/year‖

format (see File67). Find its component that represents the latest autumn date.

If the given file does not contain autumn dates then output an empty string.

File73. A file of strings is given; the file contains dates in the ―day/month/year‖

format (see File67). Write all its components to a new file in descending order

of their date values.

15.5. Files containing matrices

An M × N matrix is a rectangular table of numbers consisting of M horizontal

rows and N vertical columns. As a rule, two-dimensional array are used to store

matrix elements (see tasks of the Matrix group). But matrix elements can be stored in

binary files of real numbers too. The files of such a ―matrix‖ structure are considered

in this subsection. As well as in other tasks of the File group, additional arrays should

not be used to store all file components.

The tasks of this subsection use some notions of matrix theory. Let us recall

the definitions of these notions.

If A is an M × N matrix then the matrix B of order N × M formed from A by

interchanging its rows with its columns is called the transpose of A:

BI,J = AJ,I, I = 1, …, N, J = 1, …, M.

Let A be an M × N matrix and B be an N × P matrix. An M × P matrix C is

called the product of A and B (and is denoted by A·B) if its elements satisfy the

following relations:

CI,J = AI,1·B1,J + AI,2·B2,J + … + A1,N·BN,J, I = 1, …, M, J = 1, …, P.

A square matrix A is called an upper triangular matrix if all its elements below

the main diagonal are equal to zero (see the main diagonal definition in the task

Matrix80):

AI,J = 0, I > J.

A square matrix A is called a lower triangular matrix if all its elements above

the main diagonal are equal to zero:

AI,J = 0, I < J.

A square matrix A is called a tridiagonal matrix if all its elements that are off

the main diagonal and two adjacent diagonals are equal to zero:

AI,J = 0, |I − J| > 1.

File74. Two integers I, J and a file of real numbers are given. This file contains

elements of square matrix (by rows). Output the value of the matrix element in

the I-th row and J-th column (rows and columns are numbered beginning

with 1). If the given matrix does not contain the required row or column then

output 0 (as a real number).

File75. A file of real numbers is given. This file contains elements of square matrix

(by rows). Create a new file that contains the transpose of the given matrix.

File76. Two files of real numbers called SA and SB are given. These files contain

elements of square matrix A and B (by rows). Create a new file called SC that

77

contains elements of the matrix product A·B. If matrices A and B cannot be

multiplied then the resulting file SC must be empty.

File77. Two integers I, J and a file of real numbers are given. The first component of

the file contains the amount of matrix columns, other file components contain

matrix elements (by rows). Output the value of the matrix element in the I-th

row and J-th column (rows and columns are numbered beginning with 1). If

the given matrix does not contain the required row or column then output 0 (as

a real number).

File78. A file of real numbers is given. The first component of the file contains the

amount of matrix columns, other file components contain matrix elements (by

rows). Create a new file that contains the transpose of the given matrix. The

resulting file must have the same structure as the given file.

File79. Two files of real numbers called SA and SB are given. The first components of

the files SA and SB contain the amount of columns of matrices A and B

respectively, other file components contain elements of matrices A and B (by

rows). Create a new file called SC that contains the matrix product A·B (the

resulting file must have the same structure as the given files). If matrices A

and B cannot be multiplied then the resulting file must be empty.

File80. A file of real numbers is given. This file contains elements of an upper

triangular matrix (by rows). Create a new file that contains elements of

nonzero part of the given matrix (by rows).

File81. A file of real numbers is given. This file contains elements of a lower

triangular matrix (by rows). Create a new file that contains elements of

nonzero part of the given matrix (by rows).

File82. A file of real numbers is given. This file contains elements of a tridiagonal

matrix (by rows). Create a new file that contains elements of nonzero part of

the given matrix (by rows).

File83. Two integers I, J and a file of real numbers are given. This file contains

elements of nonzero part of an upper triangular matrix (by rows). Output the

matrix order and the value of the matrix element in the I-th row and J-th

column (rows and columns are numbered beginning with 1). If the required

element lies in zero part of the matrix then output 0 (as a real number). If the

given matrix does not contain the required row or column then output −1 (as a

real number).

File84. Two integers I, J and a file of real numbers are given. This file contains

elements of nonzero part of a lower triangular matrix (by rows). Output the

matrix order and the value of the matrix element in the I-th row and J-th

column (rows and columns are numbered beginning with 1). If the required

element lies in zero part of the matrix then output 0 (as a real number). If the

given matrix does not contain the required row or column then output −1 (as a

real number).

78

File85. Two integers I, J and a file of real numbers are given. This file contains

elements of nonzero part of a tridiagonal matrix (by rows). Output the matrix

order and the value of the matrix element in the I-th row and J-th column

(rows and columns are numbered beginning with 1). If the required element

lies in zero part of the matrix then output 0 (as a real number). If the given

matrix does not contain the required row or column then output −1 (as a real

number).

File86. A file of real numbers is given. This file contains elements of nonzero part of

an upper triangular matrix (by rows). Create a new file that contains all

elements of the given matrix (by rows).

File87. A file of real numbers is given. This file contains elements of nonzero part of

a lower triangular matrix (by rows). Create a new file that contains all

elements of the given matrix (by rows).

File88. A file of real numbers is given. This file contains elements of nonzero part of

a tridiagonal matrix (by rows). Create a new file that contains all elements of

the given matrix (by rows).

File89. Two files of real numbers called SA and SB are given. These files contain

nonzero parts of upper triangular matrices A and B (by rows). Create a new

file called SC that contains nonzero part of the matrix product A·B (by rows). If

matrices A and B cannot be multiplied then the resulting file must be empty.

File90. Two files of real numbers called SA and SB are given. These files contain

nonzero parts of lower triangular matrices A and B (by rows). Create a new

file called SC that contains nonzero part of the matrix product A·B (by rows). If

matrices A and B cannot be multiplied then the resulting file must be empty.

16. Text files

The condition ―A text file is given‖ means that the file name is given (as a

string input data) and the corresponding file exists and is located in the working

directory. File components (as a rule, lines of characters) must be read using standard

input procedures (or functions) of a programming language being used.

If the task requires to create a new file then the new file name is included in

the input data set; this name is usually the last element of input data. Standard output

procedures (or functions) of the programming language must be used for writing data

to files.

The size of any input file is not fixed, so additional arrays should not be used

to store all file components but one may use temporary files.

Binary files may also be used in the tasks of ―Text files‖ group; see the

beginning of the section ―Binary files‖ for additional rules connected with files of this

kind.

79

16.1. Basic operations

Text1. Given a file name and two positive integers N and K, create a new text file

with this name. The file must contain N lines, each line consists of

K characters ‖*‖.

Text2. Given a file name and an integer N (0 < N < 27), create a new text file with

this name. The file must contain N lines, the first line consisting of one Latin

small letter ―a‖, the second one consisting of two letters ―ab‖, and so on; the

last line must consist of N initial small letters of the English alphabet.

Text3. Given a file name and an integer N (0 < N < 27), create a new text file with

this name. The file must contain N lines of length N. The K-th line

(K = 1, …, N) must begin with K initial capital letters of the English alphabet

and must end with the characters ―*‖. For instance, if N equals 4 then lines of

the resulting file must be as follows: ―A***‖, ―AB**‖, ―ABC*‖, ―ABCD‖.

Text4. Given a text file, output the amount of its characters and lines. EOLN (end-of-

line) and EOF (end-of-file) markers must not be counted.

Text5. Given a string S and a text file, add the string S to the end of the file.

Text6. Given two text files, add the contents of the second file to the end of the first

one.

Text7. Given a string S and a text file, add the string S to the beginning of the file.

Text8. Given two text files, add the contents of the second file to the beginning of the

first one.

Text9. Given an integer K and a text file, insert an empty line before the file line with

the order number K. If the file does not contain a line with the required number

then do not change it.

Text10. Given an integer K and a text file, insert an empty line after the file line with

the order number K. If the file does not contain a line with the required number

then do not change it.

Text11. Given a text file, double occurrences of all empty lines of the file.

Text12. Given a string S and a text file, replace all empty lines of the file with the

contents of the string S.

Text13. Given a nonempty text file, remove its first line.

Text14. Given a nonempty text file, remove its last line.

Text15. Given an integer K and a text file, remove the file line with the order

number K. If the file does not contain a line with the required number then do

not change it.

Text16. Given a text file, remove all empty lines from the file.

Text17. Given two text files, add each line of the second file to the end of the

corresponding line of the first one. If the second file is shorter (in lines) than

the first one then do not change the remaining lines of the first file.

80

Text18. Given an integer K and a text file, remove K leading characters from each

line of the file. If the length of some line is less than K then remove all

characters from the line.

Text19. Given a text file, replace all its Latin capital letters with the corresponding

small letters, and all Latin small letters with the capital ones.

Text20. Given a text file, replace its successive blank characters with the single

blank character.

Text21. Given a text file that contains more than three lines, remove its last three

lines.

Text22. Given an integer K (0 < K < 10) and a text file that contains more than

K lines, remove its last K lines.

Text23. An integer K (0 < K < 10) and a text file that contains more than K lines are

given. Create a new file that contains K last lines of the given file.

16.2. Text analysis and formatting

Text24. A text file is given. Find the amount of paragraphs of the given text provided

that paragraphs are separated by one or more empty lines.

Text25. An integer K and a text file are given. Remove a paragraph with the order

number K from the given file provided that paragraphs are separated by one or

more empty lines. Empty lines must not be removed. If the file does not

contain a paragraph with the required number then do not change it.

Text26. A text file is given. Find the amount of paragraphs of the given text provided

that the first line of each paragraph is indented by five blank characters. Empty

lines must not be counted.

Text27. An integer K and a text file are given. Remove a paragraph with the order

number K from the given file provided that the first line of each paragraph is

indented by five blank characters. Empty lines must not be counted and

removed. If the file does not contain a paragraph with the required number

then do not change it.

Text28. A text file is given. The file does not contain empty lines, the first line of

each paragraph is indented by five blank characters. Insert an empty line

between adjacent paragraphs (do not insert empty lines to the beginning and

end of the file).

Text29. A text file is given. Output its first word of the maximal length. A word is

defined as a character sequence that does not contain blank characters and is

bounded by blank characters or the line beginning/end.

Text30. A text file is given. Output its last word of the minimal length. A word is

defined as a character sequence that does not contain blank characters and is

bounded by blank characters or the line beginning/end.

Text31. An integer K and a text file are given. Create a new binary file of strings that

contains all words of length K from the given file. A word is defined as a

81

character sequence that does not contain blank characters, punctuation marks

and is bounded by blank characters, punctuation marks or the line

beginning/end. If the given file does not contain words of length K then the

resulting file must be empty.

Text32. A char C that is a Latin capital letter and a text file are given. Create a new

binary file of strings that contains words of the given text with the first

character C (of uppercase or lowercase). A word is defined as a character

sequence that does not contain blank characters, punctuation marks and is

bounded by blank characters, punctuation marks or the line beginning/end. If

the given file does not contain the required words then the resulting file must

be empty.

Text33. A char C that is a Latin small letter and a text file are given. Create a new

binary file of strings that contains words of the given text with at least one

character C (of uppercase or lowercase). A word is defined as a character

sequence that does not contain blank characters, punctuation marks and is

bounded by blank characters, punctuation marks or the line beginning/end. If

the given file does not contain the required words then the resulting file must

be empty.

Text34. A text file whose lines are left-aligned is given. Make the given text right-

aligned by means of adding leading blank characters to all nonempty lines. The

width of text must be equal to 50 characters.

Text35. A text file whose lines are left-aligned is given. Make the given text centered

by means of adding leading blank characters to all nonempty lines. The width

of text must be equal to 50 characters. If the length of line is an odd number

then add one blank character to the beginning of this line before centering.

Text36. A text file whose lines are right-aligned is given. Make the given text

centered by means of removing a half of leading blank characters from all

nonempty lines. If the amount of leading blank characters of line is an odd

number then remove one blank character from the beginning of this line before

centering.

Text37. A text file whose lines are left-aligned is given. Paragraphs of the given text

are separated by one empty line. Make the given text full-aligned (that is, left-

aligned and right-aligned simultaneously) by means of inserting additional

blank characters between words in all nonempty lines except the last line of

each paragraph. Spaces between words in each line must be processed from

right to left; the width of text must be equal to 50 characters.

Text38. An integer K (> 25) and a text file, whose lines are left-aligned, are given.

Paragraphs of the given text are separated by one empty line. Format the given

text so that all its lines consist of no more than K characters. The resulting text

must contain the same paragraphs and be left-aligned. Blank characters at the

end of lines must be removed. Save the formatted text in a new text file.

82

Text39. An integer K (> 25) and a text file, whose lines are left-aligned, are given.

The file does not contain empty lines, the first line of each paragraph is

indented by five blank characters. Format the given text so that all its lines

consist of no more than K characters. The resulting text must contain the same

paragraphs and be left-aligned. Blank characters at the end of lines must be

removed. Save the formatted text in a new text file.

16.3. Text files with numeric data

The decimal separator in string representation of any real number with nonzero

fractional part is assumed to be the decimal point ―.‖ in all tasks of this subsection.

Text40. Two files of integers are given; the files contain the equal amount of

components. Create a new text file that contains string representations of

components of the given binary files. These representations must be arranged

in two columns, each of 30 characters width (the first and second columns

contain components of the first and second file respectively). Each line of the

resulting text must start and end with ―|‖ separator (the numeric value 124), all

string representations of integers are right-aligned with respect to column

boundary.

Text41. Three files of integers are given; the files contain the equal amount of

components. Create a new text file that contains string representations of

components of the given binary files. These representations must be arranged

in three columns, each of 20 characters width (the first, second, and third

columns contain components of the corresponding file). Each line of the

resulting text must start and end with ―|‖ separator (the numeric value 124), all

string representations of integers are left-aligned with respect to column

boundary.

Text42. Real numbers A, B and an integer N are given. Create a text file that contains

table of values of the function (x)
1/2

 at points of the segment [A, B] with the

step H = (B − A)/N (that is, at the points A, A + H, A + 2·H, …, B). The table

consists of two columns, the first column contains arguments x, the second one

contains the function values (x)
1/2

. The width of the columns is 10 and 15

characters respectively; the width of the fractional part of arguments and

function values is 4 and 8 respectively; all string representations of numbers

are right-aligned with respect to column boundary.

Text43. Real numbers A, B and an integer N are given. Create a text file that contains

table of values of the functions sin(x) and cos(x) at points of the segment [A, B]

with the step H = (B − A)/N (that is, at the points A, A + H, A + 2·H, …, B).

The table consists of three columns, the first column contains arguments x, the

second and the third one contains the function values sin(x) and cos(x)

respectively. The width of the first column is 8 characters, the width of the

other columns is 12 characters; the width of the fractional part of arguments

and function values is 4 and 8 respectively; all string representations of

numbers are right-aligned with respect to column boundary.

83

Text44. A text file is given. Each line of the file represents an integer padded by

several leading and trailing blank characters. Output the amount and sum of

these integers.

Text45. A text file is given. Each line of the file represents an integer or real number

padded by several leading and trailing blank characters. All real numbers have

nonzero fractional part. Output the amount and sum of numbers with nonzero

fractional part.

Text46. A text file is given. Each line of the file represents several integers and real

numbers that are separated by one or more blank characters. All real numbers

have nonzero fractional part. Create a binary file of real numbers that contains

all given numbers with nonzero fractional part (in the same order).

Text47. A text file is given. Each line of the file represents an integer or real number

padded by several leading and trailing blank characters. All real numbers have

nonzero fractional part. Output the amount and sum of integers.

Text48. A text file is given. Each line of the file represents several integers and real

numbers that are separated by one or more blank characters. All real numbers

have nonzero fractional part. Create a binary file of integers that contains all

integers (in the same order).

Text49. A text file and a binary file of integers are given. Add a string representation

of each integer from the binary file to the end of the corresponding line of the

text file. If the amount of integers is less than the amount of text lines then do

not change remaining text lines.

Text50. A text file is given. Each line of the text file consists of a text string (of

30 characters length) and a representation of a real number. Create two binary

files; the first one is a file of strings that contains text parts from the given text

file, the second one is a file of real numbers that contains numbers from the

given text file (in the same order).

Text51. A text file is given. The file contains a table of real numbers; the table

consists of three columns. The width of each column and the alignment of

numbers are arbitrary. Create three binary files of real numbers; each file must

contain numbers from the corresponding table column (in the same order).

Text52. A text file is given. The file contains a table of real numbers; the table

consists of three columns. A character-separator is placed between adjacent

columns, before the first column and after the last one. The width of each

column and the alignment of numbers are arbitrary; a character that is used as

a separator is arbitrary too. Create a binary file of integers that contains the

sum of numbers from each row of the table.

16.4. Additional tasks

Text53. Given a text file, create a new binary file of characters that contains all

punctuation marks of the text (in the same order).

84

Text54. A text file is given. Create a new binary file of characters that contains all

characters of the given text (without repetitions) including blank character and

punctuation marks. The order of characters is determined by their first

occurrence in the text.

Text55. A text file is given. Create a new binary file of characters that contains all

characters of the given text (without repetitions) including blank character and

punctuation marks. The characters must be in ascending order of their numeric

values in the character set.

Text56. A text file is given. Create a new binary file of characters that contains all

characters of the given text (without repetitions) including blank character and

punctuation marks. The characters must be in descending order of their

numeric values in the character set.

Text57. A text file is given. Find the amount of occurrences of each Latin small letter

and create a new binary file of strings whose components have the following

format: ―<a letter>–<amount of its occurrences>― (for example, ―a–25‖).

Letters that are absent in the text should not be included in the new file. Strings

of the resulting file must be in alphabetic order.

Text58. A text file is given. Find the amount of occurrences of each Latin small letter

and create a new binary file of strings whose components have the following

format: ―<a letter>–<amount of its occurrences>― (for example, ―a–25‖).

Letters that are absent in the text should not be included in the new file. Strings

of the new file must be in descending order of the amount of letter

occurrences; if some letters have the equal amount of occurrences then the

corresponding strings must be in alphabetic order.

Text59. A string S that consists of 10 digits and a text file that contains an English

text are given. Encrypt the file using the right cyclic shift of any letter by

SK mod 10 + 1 positions of the English alphabet, where K is the line position of the

letter, characters SN of the given string S are numbered beginning with 1, and

―mod‖ denotes the operator of taking the remainder after integer division. For

instance, letters that are placed in the line positions 1, 11, 21, … are shifted

by S1 positions of alphabet, letters that are placed in the line positions 2, 12,

22, … are shifted by S2 positions of alphabet, and so on). Do not change blank

characters and punctuation marks.

Text60. A string and a text file are given. The file contains an encrypted English text

(the method of encryption is described in Text59), the string is the first

decrypted line of the given text. Decrypt the file; if the given information is

insufficient for decryption then do not change the given file.

85

17. Structured data types in procedures
and functions

All tasks of this section require to write a procedure or function and then use it

for input data processing. Parameters of any function are assumed to be an input ones;

if the kind of a procedure parameter is not specified explicitly then this parameter is

assumed to be an input one too.

17.1. Arrays processing

Any given array should be input in the following order: its size (one integer for

one-dimensional arrays, two integers for matrices, that is, two-dimensional arrays)

and then all its elements in ascending order of indices (the elements of matrices

should be input by rows).

The size of any one-dimensional array as well as the amount of rows and

columns of any matrix are assumed to be in the range 1 to 10 if the task does not

specify them explicitly. The order number of the first element of one-dimensional

array is assumed to be equal to 1; the order number of the first row (column) of

matrix is assumed to be equal to 1 too.

Procedures and functions that perform array processing should use no

additional array of the same size.

Param1. Write an integer function MinElem(A, N) that returns the value of the

minimal element of an array A of N integers. Using this function, find the

minimal elements of three given arrays A, B, C whose sizes are NA, NB, NC

respectively.

Param2. Write an integer function MaxNum(A, N) that returns the order number of

the maximal element of an array A of N real numbers. Using this function, find

the order numbers of the maximal elements of three given arrays A, B, C

whose sizes are NA, NB, NC respectively.

Param3. Write a procedure MinmaxNum(A, N, NMin, NMax) that finds the order

numbers NMin and NMax of the minimal and the maximal element of an

array A of N real numbers (integers NMin and NMax are output parameters).

Using this procedure, find the order numbers of the minimal and the maximal

elements of three given arrays A, B, C whose sizes are NA, NB, NC respectively.

Param4. Write a procedure Inv(A, N) that changes the order of elements of an

array A of N real numbers to inverse one (the array A is an input and output

parameter). Using this procedure, change order of elements of arrays A, B, C

whose sizes are NA, NB, NC respectively.

Param5. Write a procedure Smooth1(A, N) that performs smoothing an array A of

N real numbers as follows: each element AK is replaced with the average of

initial values of K first elements of the given array A. The array A is an input

and output parameter. Using five calls of this procedure, perform smoothing a

86

given array A of N real numbers five times successively; output array elements

after each smoothing.

Param6. Write a procedure Smooth2(A, N) that performs smoothing an array A of

N real numbers as follows: an element A1 remains unchanged; elements AK

(K = 2, …, N) is replaced with the average of initial values of elements AK−1

and AK. The array A is an input and output parameter. Using five calls of this

procedure, perform smoothing a given array A of N real numbers five times

successively; output array elements after each smoothing.

Param7. Write a procedure Smooth3(A, N) that performs smoothing an array A of

N real numbers as follows: each array element is replaced with the average of

initial values of this element and its neighbors. The array A is an input and

output parameter. Using five calls of this procedure, perform smoothing a

given array A of N real numbers five times successively; output array elements

after each smoothing.

Param8. Write a procedure RemoveX(A, N, X) that removes all elements equal an

integer X from an array A of N integers. The array A and its size N are input

and output parameters. Using this procedure, remove elements with given

values XA, XB, XC from three given arrays A, B, C of size NA, NB, NC

respectively and output the new size and elements of each changed array.

Param9. Write a procedure RemoveForInc(A, N) that removes some elements from

an array A of N real numbers so that the values of elements being remained

were in ascending order: the first element remains unchanged, the second

element must be removed if its value is less than the value of the first one, the

third element must be removed if its value is less than the value of the previous

element being remained, and so on. For instance, the array of elements 5.5,

2.5, 4.6, 7.2, 5.8, 9.4 must be changed to 5.5, 7.2, 9.4. All procedure

parameters are input and output ones. Using this procedure, change three given

arrays A, B, C whose sizes are NA, NB, NC respectively and output the new size

and elements of each changed array.

Param10. Write a procedure DoubleX(A, N, X) that doubles occurrences of all

elements equal an integer X for an array A of N integers. The array A and its

size N are input and output parameters. Using this procedure, double

occurrences of elements with given values XA, XB, XC for three given arrays A,

B, C of size NA, NB, NC respectively and output the new size and elements of

each changed array.

Param11. Write a procedure SortArray(A, N) that sorts an array A of N real numbers

in ascending order. The array A is an input and output parameter. Using this

procedure, sort three given arrays A, B, C of size NA, NB, NC respectively.

Param12. Write a procedure SortIndex(A, N, I) that creates an index array I for an

array A of N real numbers. The index array contains order numbers of elements

of array A so that they correspond to array elements in ascending order of their

values (the array A remains unchanged). The index array I is an output

87

parameter. Using this procedure, create index arrays for three given arrays A,

B, C of size NA, NB, NC respectively.

Param13. Write a procedure Hill(A, N) that changes order of elements of an array A

of N real numbers as follows: the minimal element of the array must be the

first one, an element, whose value is the next to minimal value, must be the

last one, an element with the next value must be the second one, and so on (as

a result, the diagram of values of the array elements will be similar to a hill).

The array A is an input and output parameter. Using this procedure, change

three given arrays A, B, C of size NA, NB, NC respectively.

Param14. Write a procedure Split1(A, NA, B, NB, C, NC) that copies elements of an

array A of NA real numbers to arrays B and C so that the array B contains all

elements of the array A with odd order numbers (1, 3, …) and the array C

contains all elements of the array A with even order numbers (2, 4, …). The

arrays B, C and their sizes NB, NC are output parameters. Apply this procedure

to a given array A of size NA and output the size and the elements for each of

the resulting arrays B and C.

Param15. Write a procedure Split2(A, NA, B, NB, C, NC) that copies elements of an

array A of NA integers to arrays B and C so that the array B contains all

elements whose values are even numbers and the array C contains all elements

whose values are odd numbers (in the same order). The arrays B, C and their

sizes NB, NC are output parameters. Apply this procedure to a given array A of

size NA and output the size and the elements for each of the resulting arrays B

and C.

Param16. Write a procedure ArrayToMatrRow(A, K, M, N, B) that copies elements

of an array A of K real numbers to an M × N matrix B (by rows). ―Superfluous‖

array elements must be ignored; if the size of the array is less than the amount

of matrix elements then zero value must be assigned to remaining matrix

elements. Two-dimensional array B is an output parameter. Having input an

array A of size K, integers M, N and using this procedure, create a matrix B and

output its elements.

Param17. Write a procedure ArrayToMatrCol(A, K, M, N, B) that copies elements of

an array A of K real numbers to an M × N matrix B (by columns).

―Superfluous‖ array elements must be ignored; if the size of the array is less

than the amount of matrix elements then zero value must be assigned to

remaining matrix elements. Two-dimensional array B is an output parameter.

Having input an array A of size K, integers M, N and using this procedure,

create a matrix B and output its elements.

Param18. Write a procedure Chessboard(M, N, A) that creates an M × N matrix A

whose elements are integers 0 and 1, which are arranged in ―chessboard‖

order, and A1,1 = 0. Two-dimensional array A is an output parameter. Having

input integers M, N and using this procedure, create an M × N matrix A.

88

Param19. Write a real-valued function Norm1(A, M, N) that computes the norm of

an M × N matrix A of real numbers using the formula

Norm1(A, M, N) = max {|A1,J| + |A2,J| + … + |AM,J|},

where the maximum is being found over J = 1, …, N. Having input an M × N

matrix A, output Norm1(A, K, N), K = 1, …, M.

Param20. Write a real-valued function Norm2(A, M, N) that computes the norm of

an M × N matrix A of real numbers using the formula

Norm2(A, M, N) = max {|AI,1| + |AI,2| + … + |AI,N|},

where the maximum is being found over I = 1, …, M. Having input an M × N

matrix A, output Norm2(A, K, N), K = 1, …, M.

Param21. Write a real-valued function SumRow(A, M, N, K) that returns the sum of

elements in K-th row of an M × N matrix A of real numbers (if K is out of the

range 1 to M then the function returns 0). Output the return value of

SumRow(A, M, N, K) for a given M × N matrix A and three given integers K.

Param22. Write a real-valued function SumCol(A, M, N, K) that returns the sum of

elements in K-th column of an M × N matrix A of real numbers (if K is out of

the range 1 to N then the function returns 0). Output the return value of

SumCol(A, M, N, K) for a given M × N matrix A and three given integers K.

Param23. Write a procedure SwapRow(A, M, N, K1, K2) that exchanges K1-th

and K2-th row of an M × N matrix A of real numbers. The matrix A is an input

and output parameter; if K1 or K2 are out of the range 1 to M then the matrix

remains unchanged. Having input an M × N matrix A and two integers K1, K2

and using this procedure, exchange K1-th and K2-th row of the matrix A.

Param24. Write a procedure SwapCol(A, M, N, K1, K2) that exchanges K1-th and K2-

th column of an M × N matrix A of real numbers. The matrix A is an input and

output parameter; if K1 or K2 are out of the range 1 to N then the matrix

remains unchanged. Having input an M × N matrix A and two integers K1, K2

and using this procedure, exchange K1-th and K2-th column of the matrix A.

Param25. Write a procedure Transp(A, M) that transposes a real-valued square

matrix A of order M (that is, reflects its elements about the main diagonal). The

matrix A is an input and output parameter. Using this procedure, transpose the

given matrix A of order M.

Param26. Write a procedure RemoveRows(A, M, N, K1, K2) that removes rows with

the order numbers in the range K1 to K2 from an M × N matrix A of real

numbers (integers K1 and K2 are assumed to satisfy the double inequality

1 < K1 ≤ K2). If K1 > M then the matrix remains unchanged, if K2 > M then

rows with numbers from K1 to M must be removed. Two-dimensional array A

and integers M, N are input and output parameters. Having input an M × N

matrix A and two integers K1, K2 and using this procedure, remove rows with

the order numbers in the range K1 to K2 from the given matrix and output a

new order and elements of the resulting matrix.

89

Param27. Write a procedure RemoveCols(A, M, N, K1, K2) that removes columns

with the order numbers in the range K1 to K2 from an M × N matrix A of real

numbers (integers K1 and K2 are assumed to satisfy the double inequality

1 < K1 ≤ K2). If K1 > N then the matrix remains unchanged, if K2 > N then rows

with numbers from K1 to N must be removed. Two-dimensional array A and

integers M, N are input and output parameters. Having input an M × N

matrix A and two integers K1, K2 and using this procedure, remove columns

with the order numbers in the range K1 to K2 from the given matrix and output

a new order and elements of the resulting matrix.

Param28. Write a procedure RemoveRowCol(A, M, N, K, L) that removes K-th row

and L-th column simultaneously from an M × N matrix A of real numbers

(integers K and L are assumed to satisfy the inequalities M > 1, N > 1). If

K > M or L > N then the matrix remains unchanged. Two-dimensional array A

and integers M, N are input and output parameters. Having input an M × N

matrix A and two integers K, L, apply this procedure to the given matrix and

output a new order and elements of the resulting matrix.

Param29. Write a procedure SortCols(A, M, N) that rearrange columns of an M × N

matrix A of integers in ascending lexicographic order (that is, for comparison

of two columns their first distinct elements with the equal order numbers must

be compared). Two-dimensional array A is an input and output parameter.

Using this procedure, sort columns of a given M × N matrix A.

17.2. Strings processing

Param30. Write an integer function IsIdent(S) that indicates whether a string S is a

valid identifier, that is, a nonempty string that does not begin with a digit and

contains Latin letters, digits, and a character ―_‖ only. If S is a valid identifier

then the function returns 0. If S is an empty string or begins with a digit then

the function returns −1 or −2 respectively. If S contains invalid characters then

the function returns the order number of the first invalid character. Using this

function, check five given strings.

Param31. Write a string function FillStr(S, N) that returns a string of length N

containing repeating copies of the template string S (the last copy of S may be

contained partially in the resulting string). Having input an integer N and five

template strings and using this function, create five resulting strings of

length N.

Param32. Write a procedure UpCaseLat(S) that converts all Latin small letters of a

string S to uppercase (others characters of S must remain unchanged). A

string S is an input and output parameter. Using this procedure, process five

given strings.

Param33. Write a procedure LowCaseLat(S) that converts all Latin capital letters of

a string S to lowercase (others characters of S must remain unchanged). A

string S is an input and output parameter. Using this procedure, process five

given strings.

90

Param34. Write a procedure TrimLeftC(S, C) that removes all leading characters

equal a character C from a string S. A string S is an input and output

parameter. Having input a character C and five strings and using this

procedure, process the given strings.

Param35. Write a procedure TrimRightC(S, C) that removes all trailing characters

equal a character C from a string S. A string S is an input and output

parameter. Having input a character C and five strings and using this

procedure, process the given strings.

Param36. Write a string function InvStr(S, K, N) that returns an inverted substring of

a string S. The substring contains N characters of S (starting at a character with

the order number K) in inverse order. If K is greater than the length of S then

the function returns an empty string; if the length of S is less than K + N then

all characters of S starting at its K-th character must be inverted. Output return

values of this function for a given string S and each of three pairs of positive

integers (K1, N1), (K2, N2), (K3, N3).

Param37. Write an integer function PosSub(S0, S, K, N) that searches for the first

occurrence of a string S0 within a substring of a string S (the substring contains

N characters of S starting at a character with the order number K). The function

returns the order number of the first character of this occurrence within S. If K

is greater than the length of S then the function returns 0; if the length of S is

less than K + N then all characters of S starting at its K-th character must be

analyzed. If the required substring of S does not contain occurrences of S0 then

the function returns 0. Output return values of this function for given

strings S0, S and each of three pairs of positive integers (K1, N1), (K2, N2),

(K3, N3).

Param38. Write an integer function PosLast(S0, S) that searches for the last

occurrence of a string S0 within a string S and returns the order number of the

first character of this occurrence. If the string S does not contain occurrences

of S0 then the function returns 0. Output return values of this function for five

given pairs of strings (S0, S).

Param39. Write an integer function PosK(S0, S, K) that searches for K-th occurrence

(K > 0) of a string S0 within a string S and returns the order number of the first

character of this occurrence. The string S is assumed to contain no overlapping

occurrences of the substring S0. If the string S does not contain occurrences

of S0 then the function returns 0. Output return values of this function for five

given triples (S0, S, K).

Param40. Write a string function WordK(S, K) that returns K-th word of a string S (a

word is defined as a character sequence that does not contain blank characters

and is bounded by blank characters or the string beginning/end). If the amount

of words in the string S is less than K then the function returns an empty string.

Having input a string S and three positive integers K1, K2, K3 and using this

function, extract words with the given order numbers from the given string.

91

Param41. Write a procedure SplitStr(S, W, N) that creates an array W of all words

being contained in a string S. The array W of strings and its size N are output

parameters. A word is defined as a character sequence that does not contain

blank characters and is bounded by blank characters or the string

beginning/end; the string S is assumed to contain no more than 10 words.

Using this function, output the amount N of words in the given string S and

also all these words.

Param42. Write a string function CompressStr(S) that compresses a string S and

returns the compressed string. The string compression must be carried out as

follows: each substring consisting of 4 or more equal characters C is replaced

by the string ―C{K}‖, where K is the amount of characters C (the string being

compressed is assumed to contain no braces ―{}‖). For example, the string

―bbbccccce‖ must be compressed to ―bbbc{5}e‖. Using this function,

compress five given strings.

Param43. Write a string function DecompressStr(S) that restores a string, which was

compressed by a function CompressStr (see Param42). An input parameter S is

a compressed string; the function returns the decompressed value of the

string S. Using this function, restore five given compressed strings.

Param44. Write a string function DecToBin(N) that returns a string containing the

binary representation of a nonnegative integer N. The string consists of

characters ―0‖, ―1‖ and does not contain leading zeros (except for the

representation of zero number). Using this function, output binary

representations of five given integers.

Param45. Write a string function DecToHex(N) that returns a string containing the

hexadecimal representation of a nonnegative integer N. The string consists of

characters ―0‖–‖9‖, ―A‖–‖F‖ and does not contain leading zeros (except for

the representation of zero number). Using this function, output hexadecimal

representations of five given integers.

Param46. Write an integer function BinToDec(S) that returns a nonnegative integer

whose binary representation is contained in a string parameter S. The

parameter S consists of characters ―0‖, ―1‖ and does not contain leading zeros

(except for the representation of zero number). Using this function, output five

integers whose binary representations are given.

Param47. Write an integer function HexToDec(S) that returns a nonnegative integer

whose hexadecimal representation is contained in a string parameter S. The

parameter S consists of characters ―0‖–‖9‖, ―A‖–‖F‖ and does not contain

leading zeros (except for the representation of zero number). Using this

function, output five integers whose hexadecimal representations are given.

17.3. Files processing

Param48. Write an integer function IntFileSize(S) that returns the amount of

components in a binary file of integers called S. If the required file does not

92

exist then the function returns −1. Using this function, output the amount of

components for three binary files of integers with given names.

Param49. Write an integer function LineCount(S) that returns the amount of lines in

a text file called S. If the required file does not exist then the function

returns −1. Using this function, output the amount of lines for three text files

with given names.

Param50. Write a procedure InvIntFile(S) that changes the order of components of a

binary file of integers called S to inverse one. If the required file does not exist

then the procedure performs no actions. Using this procedure, process three

binary files of integers with given names.

Param51. Write a procedure AddLineNumbers(S, N, K, L) that adds the number of

each line of a text file called S to the beginning of this line; the first line

receives the number N, the second line receives the number N + 1, and so on.

Any number is right-aligned within K first character positions of a line and is

separated from the following text by L blank characters (K > 0, L > 0). If a line

is empty then its number should not contain trailing blank characters. Apply

this procedure to a given text file using given values of parameters N, K, L.

Param52. Write a procedure RemoveLineNumbers(S) that removes order numbers

(with leading and trailing blank characters) from the beginning of each line of

a text file called S (the format of order numbers is described in Param51). If

file lines do not contain order numbers then the procedure performs no actions.

Apply this procedure to a given text file.

Param53. Write a procedure SplitIntFile(S0, K, S1, S2) that copies first K (≥ 0)

components of an existing file called S0 to a new file called S1 and other

components of this file to a new file called S2. All files are assumed to be

binary files of integers; one of the resulting files may be empty. Apply this

procedure to a given file called S0 using given values of K, S1, S2.

Param54. Write a procedure SplitText(S0, K, S1, S2) that copies first K (≥ 0) lines of

an existing text file called S0 to a new text file called S1 and other lines of this

file to a new text file called S2 (one of the resulting files may be empty). Apply

this procedure to a given file called S0 using given values of K, S1 S2.

Param55. Write a procedure StringFileToText(S) that converts a binary file of

strings called S to a new text file with the same name. Using this procedure,

convert two given files of strings with the names S1, S2 to text files.

Param56. Write a procedure TextToStringFile(S) that converts a text file called S to

a new binary file of strings with the same name. Using this procedure, convert

two given text files with the names S1, S2 to binary files of strings.

Param57. Write a procedure EncodeText(S, K) that encrypts the contents of a text

file called S using the right cyclic shift of any Latin letter by K positions of the

English alphabet (0 < K < 10). For instance, if K = 3 then the letter ―A‖ is

encoded by the letter ―D‖, ―a‖ is encoded by ―d‖, ―B‖ is encoded by ―E‖, ―z‖ is

encoded by ―c‖, and so on. Blank characters and punctuation marks should not

93

be changed. Having input an integer K and using this procedure, encrypt a text

file with the given name.

Param58. Write a procedure DecodeText(S, K) that decrypts the contents of a text

file called S provided that this file was encrypted by the method described in

Param57 with using an integer parameter K. Having input an integer K and

using this procedure, decrypt a text file with the given name.

17.4. Records processing

Fields of each date record should be input/output in the following order: Day,

Month, Year. Fields of each 2D-point record should be input/output in the following

order: X (an x-coordinate), Y (an y-coordinate).

Param59. Define a new type called TDate that is a record with three integer fields:

Day (a day number), Month (a month number), Year (a year number). Also

write a logical function LeapYear(D) with a parameter D of TDate type. The

function returns True if a year of date D is a leap year, and False otherwise.

Output the return values of this function for five given dates (all dates are

assumed to be correct). Note that a year is a leap year if it is divisible by 4

except for years that are divisible by 100 and are not divisible by 400.

Param60. Using the TDate type and the LeapYear function (see Param59), write an

integer function DaysInMonth(D) with a parameter D of TDate type. The

function returns the amount of days for the month of date D. Output the return

values of this function for five given dates (all dates are assumed to be

correct).

Param61. Using the TDate type and the DaysInMonth function (see Param59 and

Param60), write an integer function CheckDate(D) with a parameter D of

TDate type. If the date D is a correct date then the function returns 0; if the

date D contains an invalid month number or invalid day number for the correct

month then the function returns 1 or 2 respectively. Output the return values of

this function for five given dates.

Param62. Using the TDate type and the DaysInMonth and CheckDate functions (see

Param59−Param61), write a procedure PrevDate(D) that changes a correct

date D (of TDate type) to the previous one; if D contains an invalid date then it

remains unchanged. The parameter D is an input and output parameter. Apply

this procedure to five given dates.

Param63. Using the TDate type and the DaysInMonth and CheckDate functions (see

Param59−Param61), write a procedure NextDate(D) that changes a correct

date D (of TDate type) to the next one; if D contains an invalid date then it

remains unchanged. The parameter D is an input and output parameter. Apply

this procedure to five given dates.

Param64. Define a new type called TPoint that is a record with two real-valued

fields: X (an x-coordinate), Y (an y-coordinate). Also write a real-valued

94

function Leng(A, B) that returns the length of a segment AB (A and B are input

parameters of TPoint type):

|AB| = ((A.X − B.X)
2
 + (A.Y − B.Y)

2
)

1/2
.

Using this function, output lengths of segments AB, AC, AD provided that the

coordinates of points A, B, C, D are given.

Param65. Using the TPoint type and the Leng function (see Param64), define a new

type called TTriangle that is a record with three fields A, B, C (triangle

vertices) of TPoint type, and write a real-valued function Perim(T) that returns

the perimeter of a triangle T (T is an input parameter of TTriangle type). Using

this function, find perimeters of triangles ABC, ABD, ACD provided that the

coordinates of points A, B, C, D are given.

Param66. Using the TPoint and TTriangle types and the Leng and Perim functions

(see Param64 and Param65), write a real-valued function Area(T) that returns

the area of a triangle T (T is an input parameter of TTriangle type):

SABC = (p·(p − |AB|)·(p − |AC|)·(p − |BC|))
1/2

,

where p is the half-perimeter. Using this function, find the areas of

triangles ABC, ABD, ACD provided that the coordinates of points A, B, C, D

are given.

Param67. Using the TPoint and TTriangle types and the Leng and Area functions

(see Param64–Param66), write a real-valued function Dist(P, A, B) that returns

the distance D(P, AB) between a point P and a line AB:

D(P, AB) = 2·SPAB/|AB|,

where SPAB is the area of the triangle PAB (parameters P, A, B are input

parameters of TPoint type). Using this function, find the distance between a

point P and each of lines AB, AC, BC provided that the coordinates of

points P, A, B, C are given.

Param68. Using the TPoint and TTriangle types and the Dist function (see Param64,

Param65, Param67), write a procedure Alts(T, h1, h2, h3) that evaluates the

altitudes h1, h2, h3 drawn from the vertices T.A, T.B, T.C of a triangle T (T is an

input parameter of TTriangle type, h1, h2, h3 are output real-valued

parameters). Using this procedure, evaluate the altitudes of each of

triangles ABC, ABD, ACD provided that the coordinates of points A, B, C, D

are given.

Param69. Using the TPoint type and the Leng function (see Param64), write a real-

valued function PerimN(P, N) that returns the perimeter of a polygon with N

(> 2) vertices. The polygon vertices have the TPoint type; an array P contains

all vertices in order of walk. Using this function, find the perimeters of three

polygons provided that the amount of vertices and the coordinates of all

vertices are given for each polygon.

Param70. Using the TPoint and TTriangle types and the Area function (see

Param64–Param66), write a real-valued function AreaN(P, N) that returns the

area of a convex polygon with N (> 2) vertices. The polygon vertices have the

TPoint type; an array P contains all vertices in order of walk. Using this

95

function, find the areas of three polygons provided that the amount of vertices

and the coordinates of all vertices are given for each polygon.

18. Recursion

18.1. Simple algorithms

It should be noted that all tasks of this subsection can be solved by means of

simple iterative algorithms without using of recursion; moreover, in some cases using

of recursion leads to inefficient algorithms (see Recur4 and Recur6). Nevertheless,

tasks of such a kind allow to receive easily an initial experience in developing of

recursive algorithms.

Recur1. Write a recursive real-valued function Fact(N) that returns the value of N-

factorial:

N! = 1·2·…·N,

where N (> 0) is an integer parameter. Using this function, output factorials of

five given integers.

Recur2. Write a recursive real-valued function Fact2(N) that returns the value of

double factorial of N:

N!! = N·(N−2)·(N−4)·…,

where N (> 0) is an integer parameter; the last factor of the product equals 2

if N is an even number, and 1 otherwise. Using this function, output double

factorials of five given integers.

Recur3. Write a recursive real-valued function PowerN(X, N) that returns the power

X
N
 (X ≠ 0 is a real number, N is an integer) calculated as follows:

X
 0
 = 1,

X
 N

 = (X
 N div 2

)
2
 if N is a positive even number,

X
 N

 = X·X
 N−1

 if N is a positive odd number,

X
 N

 = 1/X
 −N

 if N < 0,

where ―div‖ denotes the operator of integer division. Using this function,

output powers X
N
 for a given real number X and five given integers N.

Recur4. Write a recursive integer function Fib1(N) that returns the Fibonacci

number FN (N is a positive integer). The Fibonacci numbers FK are defined as:

F1 = F2 = 1, FK = FK−2 + FK−1, K = 3, 4, … .

Using the function Fib1, find the Fibonacci numbers FN for five given

integers N; output the value of each Fibonacci number and also the amount of

the recursive function calls, which are required for its calculation.

Recur5. Write a recursive integer function Fib2(N) that returns the Fibonacci

number FN (N is a positive integer). The Fibonacci numbers FK are defined as:

F1 = F2 = 1, FK = FK−2 + FK−1, K = 3, 4, … .

The integer N is assumed to be not greater than 20. Decrease the amount of

recursive calls of the function Fib2 (in comparison with the Fib1 function from

the task Recur4) by means of using an additional array of integers that should

96

store the Fibonacci numbers having been calculated. Using the Fib2 function,

output the Fibonacci numbers FN for five given integers N.

Recur6. Write a recursive integer function Combin1(N, K) that returns C(N, K) (the

number of combinations of N objects taken K at a time) using the following

recursive relations (N and K are integers, N > 0, 0 ≤ K ≤ N):

C(N, 0) = C(N, N) = 1,

C(N, K) = C(N − 1, K) + C(N − 1, K − 1) if 0 < K < N.

Using the function Combin1, find the numbers C(N, K) for a given integer N

and five given integers K; output the value of each number and also the

amount of the recursive function calls, which are required for its calculation.

Recur7. Write a recursive integer function Combin2(N, K) that returns C(N, K) (the

number of combinations of N objects taken K at a time) using the following

recursive relations (N and K are integers, N > 0, 0 ≤ K ≤ N):

C(N, 0) = C(N, N) = 1,

C(N, K) = C(N − 1, K) + C(N − 1, K − 1) if 0 < K < N.

The integer N is assumed to be not greater than 20. Decrease the amount of

recursive calls of the function Combin2 (in comparison with the Combin1

function from the task Recur6) by means of using an additional two-

dimensional array of integers that should store the numbers C(N, K) having

been calculated. Using the Combin2 function, output the numbers C(N, K) for

a given integer N and five given integers K.

Recur8. Write a recursive real-valued function RootK(X, K, N) that returns an

approximate value of a K-th root of X using the following formulas:

Y0 = 1, YN+1 = YN − (YN − X/(YN)
K−1

)/K,

where X (> 0) is a real number, K (> 1), N (> 0) are integers, YN denotes

RootK(X, K, N) for a fixed values of X and K. Using this function, output

approximate values of a K-th root of X for a given X, K and six integers N.

Recur9. Write a recursive integer function GCD(A, B) that returns the greatest

common divisor of two positive integers A and B. Use the Euclidean

algorithm:

GCD(A, B) = GCD(B, A mod B), if B ≠ 0; GCD(A, 0) = A,

where ―mod‖ denotes the operator of taking the remainder after integer

division. Using this function, find the greatest common divisor for each of

pairs (A, B), (A, C), (A, D) provided that integers A, B, C, D are given.

Recur10. Write a recursive integer function DigitSum(K) that returns the sum of

digits of an integer K (the loop statements should not be used). Using this

function, output the sum of digits for each of five given integers.

Recur11. Write a recursive integer function MaxElem(A, N) that returns the maximal

element of an array A of N integers (1 ≤ N ≤ 10; the loop statements should not

be used). Using this function, output the maximal elements of three given

arrays A, B, C whose sizes are NA, NB, NC respectively.

97

Recur12. Write a recursive integer function DigitCount(S) that returns the amount of

digit characters in a string S (the loop statements should not be used). Using

this function, output the amount of digit characters for each of five given

strings.

Recur13. Write a recursive logical function Palindrome(S) that returns True if a

string S is a palindrome (i. e., it is read equally both from left to right and from

right to left), and False otherwise; the loop statements should not be used.

Output return values of this function for five given string parameters.

18.2. Parsing of expressions

Input strings are assumed to contain no blank characters in all tasks of this

subsection.

The loop statements should not be used for solving these tasks.

Recur14. Given a string S that represents a correct expression of integer type, output

the value of this expression. The expression is defined as follows:

<expression> ::= <digit> | <expression> + <digit> |

 <expression> − <digit>

Recur15. Given a string S that represents a correct expression of integer type, output

the value of this expression. The expression is defined as follows:

<expression> ::= <term> | <expression> + <term> |

 <expression> − <term>

<term> ::= <digit> | <term> * <digit>

Recur16. Given a string S that represents a correct expression of integer type, output

the value of this expression. The expression is defined as follows:

<expression> ::= <term> | <expression> + <term> |

 <expression> − <term>

<term> ::= <element> | <term> * <element>

<element> ::= <digit> | (<expression>)

Recur17. Given a string S that represents a correct expression of integer type, output

the value of this expression. The expression is defined as follows:

<expression> ::= <digit> |

 (<expression><operator><expression>)

<operator> ::= + | − | *

Recur18. A nonempty string S that represents an expression of integer type is given

(see the expression definition in Recur17). Output True if the given expression

is a correct one, otherwise output False.

Recur19. A nonempty string S that represents an expression of integer type is given

(see the expression definition in Recur17). Output 0 if the given expression is a

correct one, otherwise output the order number of its first character that is

invalid, superfluous or missing.

98

Recur20. Given a string S that represents a correct expression of integer type, output

the value of this expression. The expression is defined as follows (functions M

and m return their maximal and minimal argument respectively):

<expression> ::= <digit> | M(<expression> , <expression>) |

 m(<expression> , <expression>)

Recur21. Given a string S that represents a correct expression of logical type, output

the value of this expression. The expression is defined as follows (―T‖ means

True, ―F‖ means False):

<expression> ::= T | F | And(<expression> , <expression>) |

 Or(<expression> , <expression>)

Recur22. Given a string S that represents a correct expression of integer type, output

the value of this expression. The expression is defined as follows (functions M

and m return their maximal and minimal argument respectively):

<expression> ::= <digit> | M(<arguments>) | m(<arguments>)

<arguments> ::= <expression> | <expression> , <arguments>

Recur23. Given a string S that represents a correct expression of logical type, output

the value of this expression. The expression is defined as follows (―T‖ means

True, ―F‖ means False):

<expression> ::= T | F | And(<arguments>) | Or(<arguments>)

<arguments> ::= <expression> | <expression> , <arguments>

Recur24. Given a string S that represents a correct expression of logical type, output

the value of this expression. The expression is defined as follows (―T‖ means

True, ―F‖ means False):

<expression> ::= T | F | And(<arguments>) |

 Or(<arguments>) | Not(<expression>)

<arguments> ::= <expression> | <expression> , <arguments>

18.3. Backtracking

Recur25. A tree of depth N is given. Each internal node of the tree has K (< 10)

children that are numbered from 1 (the most left child) to K (the most right

child). The number of the tree root is 0. Create a text file (with a given name)

whose lines contain paths from the root to all tree leaves. Paths must be

ordered from the most left path (―011...1‖) to the most right path (for instance,

―033...3‖ provided that K = 3); the last nodes of path must be changed faster

than the first ones.

Recur26. A tree of depth N is given. Each internal node of the tree has K (< 10)

children that are numbered from 1 (the most left child) to K (the most right

child). The number of the tree root is 0. Create a text file (with a given name)

whose lines contain paths from the root to all tree leaves; each path must

99

satisfy the following additional condition: adjacent nodes of the path have

different numbers. The order of paths must be the same as in Recur25.

Recur27. A tree of depth N is given (N is an even number). Each internal node of the

tree has two children; the left child ―A‖ with the weight 1 and the right child

―B‖ with the weight −1. The tree root ―C‖ has the weight 0. Create a text file

(with a given name) whose lines contain paths from the root to all tree leaves;

each path must satisfy the following additional condition: the total weight of

all path nodes is equal to 0. The order of paths must be the same as in Recur25.

Recur28. A tree of depth N is given; see the description of tree nodes in Recur27.

Create a text file (with a given name) whose lines contain paths from the root

to all tree leaves; each path must satisfy the following additional condition: the

total weight of any initial part of the path nodes is nonnegative. The order of

paths must be the same as in Recur25.

Recur29. A tree of depth N is given. Each internal node of the tree has three

children; the left child ‖A‖ with the weight 1, the middle child ‖B‖ with the

weight 0, the right child ‖C‖ with the weight −1. The tree root ‖D‖ has the

weight 0. Create a text file (with a given name) whose lines contain paths from

the root to all tree leaves; each path must satisfy two additional conditions: the

total weight of any initial part of the path nodes is nonnegative, and the total

weight of all path nodes equals 0. The order of paths must be the same as in

Recur25.

Recur30. A tree of depth N is given; see the description of tree nodes in Recur29.

Create a text file (with a given name) whose lines contain paths from the root

to all tree leaves; each path must satisfy two additional conditions: adjacent

nodes of the path have different letters, and the total weight of all path nodes

equals 0. The order of paths must be the same as in Recur25.

19. Dynamic data structures (based on pointers)

All numbers mentioned in tasks of this group are of integer type. All pointers

are of PNode type; they point to records of TNode type. In the tasks of this group the

Data, Next, and Prev fields of the TNode record are used, therefore one can assume

that the PNode and TNode types are defined as follows:

[Pascal]
type

 PNode = ^TNode;

 TNode = record

 Data: integer;

 Next: PNode;

 Prev: PNode;

 end;

100

[C++]
struct TNode

{

 int Data;

 TNode* Next;

 TNode* Prev;

};

typedef TNode* PNode;

In the introductory tasks and in the tasks devoted to stacks and queues only the

Data and Next fields of the TNode record are used. In the tasks devoted to lists all

fields (Data, Next, Prev) of the TNode record are used.

Words ―pointer‖ (to some data) and ―address‖ (of some data) are used as

synonyms since variables of pointer type are intended for storing addresses.

The order number of the first node of a list is assumed to be equal to 1.

In C++ programs the delete p operator or DeleteNode(p) function call should

be used to free the memory that a pointer p (of the PNode type) addresses.

19.1. Nodes and chains of nodes

Dynamic1. An address P1 of a record of TNode type is given. The record consists of

the Data field (of integer type) and the Next field (of PNode type that refers to

a variable of TNode type). The given record is linked by its Next field with the

next record of the same type. Output the value of the Data field for each record

and the address P2 of the record that follows the given one.

Dynamic2. An address P1 of a record of TNode type is given. The record is linked

by its Next field with the next record of the same type, that record is linked

with the next one, and so on, until the last record whose Next field equals nil

(as a result, we obtain a chain of linked records). Output the value of the Data

field for each chain component, the chain length (that is, the amount of its

components) and the address of the last chain component.

19.2. Stack

In these tasks a stack structure is implemented by a chain of linked

components (nodes) of TNode type. The Next field of the last node equals nil. The

first node is said to be a top of the stack. The pointer to the top of the stack provides

access to the stack data (if the stack is empty then this pointer equals nil). The value

of the Data field of a stack component is considered as the value of this component.

Dynamic3. An integer D and a pointer P1 to the top of a nonempty stack are given.

Push a component with the value D onto the stack and output the address P2 of

a new top of the stack.

Dynamic4. An integer N (> 0) and a sequence of N integers are given. Create a stack

that contains N components with the given values (a component with the last

value must be the top of the stack) and output a pointer to the top of the stack.

101

Dynamic5. A pointer P1 to the top of a nonempty stack is given. Pop the top

component off the stack and output its value D and the address P2 of a new top

of the stack. If the stack will be empty after popping the component then P2

must be equal to nil. After popping the component release the memory

allocated for this component.

Dynamic6. A pointer P1 to the top of a stack is given; the stack contains at least ten

components. Pop the first nine components off the stack and output their

values and the address P2 of a new top of the stack. After popping components

release the memory allocated for these components.

Dynamic7. A pointer P1 to the top of a stack is given (if the stack is empty then P1

equals nil). Pop all components off the stack and output their values. Also

output the amount of popped components (if the stack is empty then output 0).

After popping components release the memory allocated for these components.

Dynamic8. Two pointers P1 and P2 that refer to the tops of two nonempty stacks are

given. Move all components from the first stack into the second one (as a

result, all components of the first stack will be contained within the second

stack in inverse order). Output the address of a new top of the second stack. Do

not use operations of allocating and freeing memory.

Dynamic9. Two pointers P1 and P2 that refer to the tops of two nonempty stacks are

given. Move components from the first stack into the second one until the

value of the top component of the first stack is equal to an even number (as a

result, all components having been moved will be contained within the second

stack in inverse order). If the first stack contains no components with even

values then move all its components. Output the address of a new top for each

stack (if the first stack will be empty then output nil for this stack). Do not use

operations of allocating and freeing memory.

Dynamic10. A pointer P1 to the top of a nonempty stack is given. Create two new

stacks by moving the given stack components whose values are even (odd)

numbers into the first (second) new stack respectively. As a result, all

components having been moved will be contained within each new stack in

inverse order; one of the new stacks may be empty. Output the address of the

top for each new stack (if one of the new stacks will be empty then output nil

for this stack). Do not use operations of allocating and freeing memory.

Dynamic11. A pointer P1 to the top of a stack is given (if the stack is empty then P1

equals nil). Also an integer N (> 0) and a sequence of N integers are given.

Define a new type called TStack that is a record with one field, Top, of PNode

type (the field refers to the top of a stack). Also write a procedure Push(S, D)

that pushes a new component with the value D onto a stack S (a record S of

TStack type is an input and output parameter, an integer D is an input

parameter). Using this procedure, push all elements of the given sequence onto

the given stack (the last number must be the value of the top component).

Output the address of a new top of the stack.

102

Dynamic12. A pointer P1 to the top of a stack is given; the stack contains at least

five components. Using the TStack type (see Dynamic11), write an integer

function Pop(S) that pops the top component off a stack S, releases memory

allocated for this component and returns its value (a record S of TStack type is

an input and output parameter). Using this function, pop five components off

the given stack and output their values. Also output a pointer that refers to a

new top of the stack (if the stack will be empty then this pointer must be equal

to nil).

Dynamic13. A pointer P1 to the top of a stack is given. Using the TStack type (see

Dynamic11), write two functions: a logical function StackIsEmpty(S) that

returns True if a stack S is empty, and False otherwise, and an integer function

Peek(S) that returns the value of the top component of the stack S. A record S

of TStack type is an input parameter for each function. Using these functions

and the Pop function from the task Dynamic12, pop five components (or all

stack components if their amount is less than five) off the given stack and

output their values. Also output the return value of the StackIsEmpty function

for the resulting stack. At last, in the case of the nonempty resulting stack,

output the value and the address of its top component.

19.3. Queue

In these tasks a queue structure is implemented by a chain of linked

components (nodes) of TNode type. The Next field of the last node equals nil. The

first node is said to be a head of the queue; the head is located at the front of the

queue. The last node is said to be a tail of the queue; the tail is located at the end of

the queue. It is convenient to store not only a pointer to the queue head but also a

pointer to the queue tail because it accelerates adding a new component to the end of

a queue. If a queue is empty then these pointers equal nil. The value of the Data field

of a queue component is considered as the value of this component.

Dynamic14. A sequence of 10 integers is given. Create a queue that contains

components with the given values (a component with the first value must be

the head of the queue, a component with the last value must be the tail of the

queue) and output pointers P1 and P2 to the head and tail of the queue

respectively.

Dynamic15. A sequence of 10 integers is given. Create two queues; the first one

must contain the given integers with odd order numbers (1, 3, …, 9), the

second one must contain the given integers with even order numbers (2, 4, …,

10). Output pointers to the head and tail of the first queue and then output

pointers to the head and tail of the second one.

Dynamic16. A sequence of 10 integers is given. Create two queues; the first one

must contain the given integers with odd values (in the same order), the second

one must contain the given integers with even values (in the same order).

Output pointers to the head and tail of the first queue and then output pointers

103

to the head and tail of the second one (if one of the queues will be empty then

output nil twice for this queue).

Dynamic17. An integer D and pointers P1 and P2 to the head and tail of a queue are

given (if the queue is empty then the pointers equal nil). Add a component

with the value D to the end of the queue and output the new addresses of the

head and tail of the queue.

Dynamic18. An integer D and pointers P1 and P2 to the head and tail of a queue are

given; the queue contains at least two components. Add a component with the

value D to the end of the queue and remove the first component from the front

of the queue. Output the value of the component being removed and also

output the new addresses of the head and tail of the queue. After removing the

component release the memory allocated for this component.

Dynamic19. An integer N (> 0) and pointers P1 and P2 to the head and tail of a

nonempty queue are given. Remove N initial components from the queue and

output their values (if the queue contains less than N components then remove

all its components). Also output the new addresses of the head and tail of the

queue (if the resulting queue will be empty then output nil twice). After

removing components release the memory allocated for them.

Dynamic20. Pointers P1 and P2 to the head and tail of a nonempty queue are given.

Remove components from the front of the queue until the value of the head of

the queue is equal to an even number; output values of all components being

removed (if the queue contains no components with even values then remove

all its components). Also output the new addresses of the head and tail of the

queue (if the resulting queue will be empty then output nil twice). After

removing components release the memory allocated for them.

Dynamic21. Two queues are given; pointers P1 and P2 refer to the head and tail of

the first one, pointers P3 and P4 refer to the head and tail of the second one (if

some queue is empty then the corresponding pointers equal nil). Move all

components from the first queue (starting with its first component) to the end

of the second one. Output the new addresses of the head and tail of the second

queue. Do not use operations of allocating and freeing memory.

Dynamic22. An integer N (> 0) and two nonempty queues are given; pointers P1

and P2 refer to the head and tail of the first one, pointers P3 and P4 refer to the

head and tail of the second one. Move N initial components of the first queue

to the end of the second one (if the first queue contains less than N components

then move all its components). Output the new addresses of the head and tail

of the first queue and then output the new addresses of the head and tail of the

second one (if the first queue will be empty then output nil twice for this

queue). Do not use operations of allocating and freeing memory.

Dynamic23. Two nonempty queues are given; pointers P1 and P2 refer to the head

and tail of the first one, pointers P3 and P4 refer to the head and tail of the

second one. Move initial components of the first queue to the end of the

104

second one until the value of the head of the first queue is equal to an even

number (if the first queue contains no components with even values then move

all its components). Output the new addresses of the head and tail of the first

queue and then output the new addresses of the head and tail of the second one

(if the first queue will be empty then output nil twice for this queue). Do not

use operations of allocating and freeing memory.

Dynamic24. Two nonempty queues are given; pointers P1 and P2 refer to the head

and tail of the first one, pointers P3 and P4 refer to the head and tail of the

second one. The queues contain the equal amount of components. Combine the

given queues into a new one; the resulting queue must contain alternating

components of the given queues starting with the head of the first one. Output

pointers to the head and tail of the resulting queue. Do not use operations of

allocating and freeing memory.

Dynamic25. Two nonempty queues are given; pointers P1 and P2 refer to the head

and tail of the first one, pointers P3 and P4 refer to the head and tail of the

second one. The values of components of each given queue are in ascending

order. Combine the given queues into a new one; the values of components of

the resulting queue must be in ascending order too. Output pointers to the head

and tail of the resulting queue. Do not use operations of allocating and freeing

memory; do not change the Data fields.

Dynamic26. Pointers P1 and P2 to the head and tail of a queue are given (if the queue

is empty then the pointers equal nil). Also an integer N (> 0) and a sequence of

N integers are given. Define a new type called TQueue that is a record with

two fields, Head and Tail, of PNode type (the fields refer to the head and tail

of a queue respectively). Also write a procedure Enqueue(Q, D) that adds a

new component with the value D to the end of a queue Q (a record Q of

TQueue type is an input and output parameter, an integer D is an input

parameter). Using this procedure, add all elements of the given sequence to the

end of the given queue. Output the new addresses of the head and tail of the

queue.

Dynamic27. Pointers P1 and P2 to the head and tail of a queue are given; the queue

contains at least five components. Using the TQueue type (see Dynamic26),

write an integer function Dequeue(Q) that removes the first component from

the front of a queue Q, releases memory allocated for this component and

returns its value (a record Q of TQueue type is an input and output parameter).

Using this function, remove five initial components from the front of the given

queue and output their values. Also output the new addresses of the head and

tail of the queue (if the queue will be empty then output nil twice).

Dynamic28. Pointers P1 and P2 to the head and tail of a queue are given. Using the

TQueue type (see Dynamic26), write a logical function QueueIsEmpty(Q) that

returns True if a queue Q is empty, and False otherwise (a record Q of TQueue

type is an input parameter). Using this function and also the Dequeue function

from the task Dynamic27, remove five initial components (or all queue

105

components if their amount is less than five) from the front of the given queue

and output their values. Also output the return value of the QueueIsEmpty

function for the resulting queue and the new addresses of the head and tail of

this queue (if the queue will be empty then output nil twice).

19.4. Doubly linked list

In these tasks a doubly linked list structure is implemented by a chain of

components (nodes) of TNode type; these nodes are linked with both the next node

and the previous one. The Next field of the last node and the Prev field of the first

node are equal to nil. Though storing of address of some list node is sufficient to

provide access to any list node, it is convenient to store three pointers (to the first,

last, and current list node) because they accelerate list operations. If a list is empty

then these pointers equal nil. The value of the Data field of a list component is

considered as the value of this component.

Dynamic29. An address P2 of a record of TNode type is given. The record consists

of the following fields: Data (of integer type), Prev, Next (each of PNode type

that refers to a variable of TNode type). The given record is linked by its Prev

and Next field with the previous and next record of the same type respectively.

Output the values of the Data field for the previous and next record, and also

output the addresses P1 and P3 of these records.

Dynamic30. A pointer P1 to the beginning of a chain of records is given; the records

have TNode type and are linked by their Next fields. Using the Prev field of

the TNode record, transform the given (singly linked) chain into the doubly

linked chain whose components are linked not only with the next ones (by the

Next field) but also with the previous ones (by the Prev field). The Prev field

of the first chain component must be equal to nil. Output the address of the last

component of the resulting chain.

Dynamic31. A pointer P0 to one of the components of a nonempty doubly linked list

is given. Output the amount N of the list components and also pointers P1

and P2 to the first and last component respectively.

Dynamic32. Two integers D1, D2 and a pointer P0 to one of the components of a

nonempty doubly linked list are given. Insert a new component with the

value D1 at the beginning of the list; insert a new component with the value D2

at the end of the list. Output the addresses of the first and last list component.

Dynamic33. An integer D and a pointer P0 to one of the components of a nonempty

doubly linked list are given. Insert a new component with the value D before

the given list component. Output the address of the component being inserted.

Dynamic34. An integer D and a pointer P0 to one of the components of a nonempty

doubly linked list are given. Insert a new component with the value D after the

given list component. Output the address of the component being inserted.

Dynamic35. Pointers P1 and P2 to the first and last component of a doubly linked list

are given. The list contains at least two components. Double occurrences of the

106

first and last list component (new components must be inserted before the

existing ones with the same value). Output the address of the first component

of the resulting list.

Dynamic36. Pointers P1 and P2 to the first and last component of a doubly linked list

are given. The list contains at least two components. Double occurrences of the

first and last list component (new components must be inserted after the

existing ones with the same value). Output the address of the last component

of the resulting list.

Dynamic37. A pointer P1 to the first component of a nonempty doubly linked list is

given. Double occurrences of all list components with odd order numbers (new

components must be inserted before the existing ones with the same value).

Output the address of the first component of the resulting list.

Dynamic38. A pointer P1 to the first component of a nonempty doubly linked list is

given. Double occurrences of all list components with odd order numbers (new

components must be inserted after the existing ones with the same value).

Output the address of the last component of the resulting list.

Dynamic39. A pointer P1 to the first component of a nonempty doubly linked list is

given. Double occurrences of all list components with odd values (new

components must be inserted before the existing ones with the same value).

Output the address of the first component of the resulting list.

Dynamic40. A pointer P1 to the first component of a nonempty doubly linked list is

given. Double occurrences of all list components with odd values (new

components must be inserted after the existing ones with the same value).

Output the address of the last component of the resulting list.

Dynamic41. A pointer P0 to one of the components of a nonempty doubly linked list

is given. Remove this component from the list and output the addresses of its

previous and next component in the list (one or both these components may be

absent; output nil for each absent component). After removing the component

release the memory allocated for this component.

Dynamic42. A pointer P1 to the first component of a doubly linked list is given. The

list contains at least two components. Remove all components with odd order

numbers from the list and output the address of the first component of the

resulting list. After removing components release the memory allocated for

them.

Dynamic43. A pointer P1 to the first component of a nonempty doubly linked list is

given. Remove all components with odd values from the list and output the

address of the first component of the resulting list (if this list will be empty

then output nil). After removing components release the memory allocated for

them.

Dynamic44. A pointer P0 to one of the components of a nonempty doubly linked list

is given. Move this component to the end of the list and output the addresses of

107

the first and last component of the resulting list. Do not use operations of

allocating and freeing memory; do not change the Data fields.

Dynamic45. A pointer P0 to one of the components of a nonempty doubly linked list

is given. Move this component to the beginning of the list and output the

addresses of the first and last component of the resulting list. Do not use

operations of allocating and freeing memory; do not change the Data fields.

Dynamic46. An integer K (> 0) and a pointer P0 to one of the components of a

nonempty doubly linked list are given. Move this component by K positions

forward in the list (if the list contains less than K components after the given

component then move it to the end of the list). Output the addresses of the first

and last component of the resulting list. Do not use operations of allocating

and freeing memory; do not change the Data fields.

Dynamic47. An integer K (> 0) and a pointer P0 to one of the components of a

nonempty doubly linked list are given. Move this component by K positions

backward in the list (if the list contains less than K components before the

given component then move it to the beginning of the list). Output the

addresses of the first and last component of the resulting list. Do not use

operations of allocating and freeing memory; do not change the Data fields.

Dynamic48. Pointers PX and PY to different components of a doubly linked list are

given. The component with the address PX precedes the component with the

address PY in the list but need not be adjacent with it. Exchange the given

components in the list and output the address of the first component of the

resulting list. Do not use operations of allocating and freeing memory; do not

change the Data fields.

Dynamic49. A pointer P1 to the first component of a nonempty doubly linked list is

given. Rearrange list components by moving all components with odd order

numbers to the end of the list (in the same order). Output the address of the

first component of the resulting list. Do not use operations of allocating and

freeing memory; do not change the Data fields.

Dynamic50. A pointer P1 to the first component of a nonempty doubly linked list is

given. Rearrange list components by moving all components with odd values

to the end of the list (in the same order). Output the address of the first

component of the resulting list. Do not use operations of allocating and freeing

memory; do not change the Data fields.

Dynamic51. Two nonempty doubly linked lists are given; pointers P1 and P2 refer to

the first and last component of the first list, a pointer P0 refers to one of the

components of the second list. Combine the given lists by inserting all

components of the first list (in the same order) before the given component of

the second list. Output the addresses of the first and last component of the

combined list. Do not use operations of allocating and freeing memory.

Dynamic52. Two nonempty doubly linked lists are given; pointers P1 and P2 refer to

the first and last component of the first list, a pointer P0 refers to one of the

108

components of the second list. Combine the given lists by inserting all

components of the first list (in the same order) after the given component of

the second list. Output the addresses of the first and last component of the

combined list. Do not use operations of allocating and freeing memory.

Dynamic53. Pointers PX and PY to different components of a doubly linked list are

given. The component with the address PX precedes the component with the

address PY in the list but need not be adjacent with it. Move list components

that are located between the given components (including these components)

to a new list (in the same order). Output the addresses of the first components

of the changed and new list. If the changed list will be empty then output nil

for this list. Do not use operations of allocating and freeing memory.

Dynamic54. Pointers PX and PY to different components of a doubly linked list are

given. The component with the address PX precedes the component with the

address PY in the list but need not be adjacent with it. Move list components

that are located between the given components (not including these

components) to a new list (in the same order). Output the addresses of the first

components of the changed and new list. If the new list will be empty then

output nil for this list. Do not use operations of allocating and freeing memory.

Dynamic55. A pointer P1 to the first component of a nonempty doubly linked list is

given. Transform this list to the circular one by assigning the address of the

first component to the Next field of the last component and the address of the

last component to the Prev field of the first component. Output the address of

the component that has been the last component of the given list.

Dynamic56. Pointers P1 and P2 to the first and last component of a doubly linked list

are given. The amount of list components is an even number. Split the list into

two circular lists (see Dynamic55); the first (second) resulting list must

contain the first (second) half of components of the given list respectively.

Output the pointers P3 and P4 to two middle components of the given list; the

component with the address P3 must be contained in the first resulting circular

list, the component with the address P4 must be contained in the second one.

Do not use operations of allocating and freeing memory.

Dynamic57. An integer K (> 0) and pointers P1 and P2 to the first and last

component of a nonempty doubly linked list are given. Perform a cyclic shift

of all list components by K positions forward (that is, from the beginning

toward the end of the list). Output the addresses of the first and last component

of the resulting list. The required shift should be performed as follows:

transform the given list to the circular one (see Dynamic55) and then break this

circular list at the position that corresponds to the given value of K. Do not use

operations of allocating and freeing memory.

Dynamic58. An integer K (> 0) and pointers P1 and P2 to the first and last

component of a nonempty doubly linked list are given. Perform a cyclic shift

of all list components by K positions backward (that is, from the end toward

the beginning of the list). Output the addresses of the first and last component

109

of the resulting list. The required shift should be performed as follows:

transform the given list to the circular one (see Dynamic55) and then break this

circular list at the position that corresponds to the given value of K. Do not use

operations of allocating and freeing memory.

Dynamic59. Pointers P1, P2, and P3 to the first, last, and current component of a

doubly linked list are given (if the list is empty then the pointers equal nil).

Also an integer N (> 0) and a sequence of N integers are given. Define a new

type called TList that is a record with three fields—First, Last, Current—of

PNode type (the fields refer to the first, last, and current component of a

doubly linked list respectively). Also write a procedure InsertLast(L, D) that

inserts a new component with the value D at the end of a list L (a record L of

TList type is an input and output parameter, an integer D is an input

parameter). The component being inserted becomes the current component of

the list. Using this procedure, insert all elements of the given sequence at the

end of the given list (in the same order). Output the new addresses of the first,

last, and current component of the resulting list.

Dynamic60. Pointers P1, P2, and P3 to the first, last, and current component of a

doubly linked list are given (if the list is empty then the pointers equal nil).

Also an integer N (> 0) and a sequence of N integers are given. Using the TList

type (see Dynamic59), write a procedure InsertFirst(L, D) that inserts a new

component with the value D at the beginning of a list L (a record L of TList

type is an input and output parameter, an integer D is an input parameter). The

component being inserted becomes the current component of the list. Using

this procedure, insert all elements of the given sequence at the beginning of the

given list (a component with the last value must be the first component of the

resulting list). Output the new addresses of the first, last, and current

component of the resulting list.

Dynamic61. Pointers P1, P2, and P3 to the first, last, and current component of a

nonempty doubly linked list and five integers are given. Using the TList type

(see Dynamic59), write a procedure InsertBefore(L, D) that inserts a new

component with the value D before the current component of a list L (a

record L of TList type is an input and output parameter, an integer D is an

input parameter). The component being inserted becomes the current

component of the list. Using this procedure, insert five given integers into the

given list. Output the new addresses of the first, last, and current component of

the resulting list.

Dynamic62. Pointers P1, P2, and P3 to the first, last, and current component of a

nonempty doubly linked list and five integers are given. Using the TList type

(see Dynamic59), write a procedure InsertAfter(L, D) that inserts a new

component with the value D after the current component of a list L (a record L

of TList type is an input and output parameter, an integer D is an input

parameter). The component being inserted becomes the current component of

the list. Using this procedure, insert five given integers into the given list.

110

Output the new addresses of the first, last, and current component of the

resulting list.

Dynamic63. Pointers P1, P2, and P3 to the first, last, and current component of a

nonempty doubly linked list are given. Using the TList type (see Dynamic59),

write three procedures: a procedure ToFirst(L) makes the first component of a

list L the current one; a procedure ToNext(L) makes the component, which

follows the current component of a list L, the new current one (provided that

such a component exists); a procedure SetData(L, D) assigns a new integer

value D to the current component of a list L. Also write a logical function

IsLast(L) that returns True if the current component of a list L is the last

component, and False otherwise. A record L of TList type is an input and

output parameter of the ToFirst and ToNext procedure and is an input

parameter of the SetData procedure and the IsLast function. Using these

procedures and function, assign zero value to the list components with odd

order numbers. Output the amount of list components and also output

addresses of the first, last, and current component of the resulting list (the

current component should be the last one).

Dynamic64. Pointers P1, P2, and P3 to the first, last, and current component of a

nonempty doubly linked list are given. Using the TList type (see Dynamic59),

write two procedures: a procedure ToLast(L) makes the last component of a

list L the current one; a procedure ToPrev(L) makes the component, which

precedes the current component of a list L, the new current one (provided that

such a component exists). Also write two functions: an integer function

GetData(L) returns the value of the current component of a list L; a logical

function IsFirst(L) returns True if the current component of a list L is the first

component, and False otherwise. A record L of TList type is an input and

output parameter of the ToLast and ToPrev procedure and is an input

parameter of the GetData and IsFirst function. Using these procedures and

functions, browse all list components from the end toward the beginning of the

list and output their values that are even numbers. Also output the amount of

list components.

Dynamic65. Pointers P1, P2, and P3 to the first, last, and current component of a

doubly linked list are given. The list contains at least five components. Using

the TList type (see Dynamic59), write an integer function DeleteCurrent(L)

that removes the current component of a list L, releases memory allocated for

the component being removed, and returns the value of this component (a

record L of TList type is an input and output parameter). If the next component

of the list L exists then it becomes the new current component, otherwise the

last component becomes the new current one. Using this function, remove five

components from the given list and output their values. Also output the new

addresses of the first, last, and current component of the resulting list (if the

resulting list will be empty then output nil three times).

111

Dynamic66. Pointers P1, P2, and P3 to the first, last, and current component of a

nonempty doubly linked list are given. Using the TList type (see Dynamic59),

write a procedure SplitList(L1, L2) that moves some components of a list L1

into a new list L2: components between the current and last component

inclusively must be moved (as a result, the list L1 will be split into two parts;

the first part may be empty). A record L1 of TList type is an input and output

parameter, a record L2 of the same type is an output parameter. The first

component of each nonempty resulting list becomes the current component of

this list. The procedure should not use operations of allocating and freeing

memory. Using this procedure, split the given list into two lists and output the

addresses of the first, last, and current component of each resulting list.

Dynamic67. Pointers to the first, last, and current component of two nonempty

doubly linked lists are given. Using the TList type (see Dynamic59), write a

procedure AddList(L1, L2) that inserts all components of a list L1 (in the same

order) at the end of a list L2; as a result, the list L1 will be empty. The first

component being inserted becomes the current component of the list L2.

Records L1 and L2 of TList type are input and output parameters. The

procedure should not use operations of allocating and freeing memory. Using

this procedure, insert the first given list at the end of the second one and output

the addresses of the first, last, and current component of the combined list.

Dynamic68. Pointers to the first, last, and current component of two nonempty

doubly linked lists are given. Using the TList type (see Dynamic59), write a

procedure InsertList(L1, L2) that inserts all components of a list L1 (in the same

order) before the current component of a list L2; as a result, the list L1 will be

empty. The first component being inserted becomes the current component of

the list L2. Records L1 and L2 of TList type are input and output parameters.

The procedure should not use operations of allocating and freeing memory.

Using this procedure, insert the first given list before the current component of

the second one and output the addresses of the first, last, and current

component of the combined list.

Dynamic69. Pointers to the first, last, and current component of two doubly linked

lists are given; the second list may be empty. Using the TList type (see

Dynamic59), write a procedure MoveCurrent(L1, L2) that removes the current

component from a list L1 and inserts this component after the current

component of a list L2. If the next component of the list L1 exists then it

becomes the new current component of this list, otherwise the last component

becomes the new current one; the component being inserted becomes the

current component of the list L2. Records L1 and L2 of TList type are input and

output parameters. The procedure should not use operations of allocating and

freeing memory. Using this procedure, move the current component of the first

given list into the second one and output the addresses of the first, last, and

current component of each resulting list (if the first resulting list will be empty

then output nil three times for this list).

112

19.5. List with the barrier component

In these tasks a doubly linked list structure is implemented by a circular

doubly linked chain of nodes with an additional barrier node (the barrier component

of a list). This barrier node is linked with the first and last ―true‖ list component by

the Next and Prev field respectively; similarly, the first/last ―true‖ list component is

linked with the barrier node by the Prev/Next field respectively. Such a list

implementation allows to store only two pointers (to the barrier and current list

component) for list processing. The Data field of the barrier component may be of

any value; for definiteness the value of this field is considered to equal zero. Both

some ―true‖ list component and the barrier component may be the current component.

An empty list in this implementation is represented as a single barrier node linked

with itself; the current component of an empty list is always the barrier component.

Dynamic70. Pointers P1 and P2 to the first and last component of a doubly linked list

are given (a doubly linked list is implemented by a chain of linked nodes of

TNode type, the Prev field of the first node and the Next field of the last node

are equal to nil); if the list is empty then the pointers equal nil. Transform the

given list into the circular list (see Dynamic55) with a barrier component. The

barrier component has zero value and is linked with the first and last

component of the given list by the Next and Prev field respectively (if the

given list is empty then the Next and Prev field of the barrier component must

refer to the barrier component itself). Output the address of the barrier

component of the resulting list. Use the operation of allocating memory only

for creation of the barrier component.

Dynamic71. Pointers P1 and P2 to the barrier and current component of a doubly

linked list are given (see the barrier component definition in Dynamic70).

Move the given list components that are between the current and last

component (inclusively) to a new list with the barrier component. If the current

component of the given list is its barrier component then the new list must be

empty (that is, it must contain the barrier component only). Output the address

of the barrier component of the new list. Use the operation of allocating

memory only for creation of the barrier component of the new list.

Dynamic72. Pointers P1 and P2 to the barrier components of two doubly linked lists

are given (see the barrier component definition in Dynamic70). Combine the

given lists by linking the last component of the first list with the first

component of the second list. Use the barrier component of the first list as the

barrier component of the combined list. Output the addresses of the first and

last component of the combined list (if the combined list will be empty then

output the address of its barrier component twice). After removing the

superfluous barrier component (of the second list) release the memory

allocated for this component.

Dynamic73. Pointers P1 and P2 to the barrier components of two doubly linked lists

are given (see the barrier component definition in Dynamic70). Combine the

given lists by linking the last component of the first list with the first

113

component of the second list. Use the barrier component of the second list as

the barrier component of the combined list. Output the addresses of the first

and last component of the combined list (if the combined list will be empty

then output the address of its barrier component twice). After removing the

superfluous barrier component (of the first list) release the memory allocated

for this component.

Dynamic74. Pointers P1 and P2 to the barrier and current component of a doubly

linked list are given (see the barrier component definition in Dynamic70).

Also an integer N (> 0) and a sequence of N integers are given. Define a new

type called TListB that is a record with two fields, Barrier and Current, of

PNode type (the fields refer to the barrier and current component of a doubly

linked list respectively). Also write a procedure LBInsertLast(L, D) that inserts

a new component with the value D at the end of a list L (a record L of TListB

type is an input and output parameter, an integer D is an input parameter). The

component being inserted becomes the current component of the list. Using

this procedure, insert all elements of the given sequence at the end of the given

list (in the same order). Output the new address of the current component of

the resulting list.

Dynamic75. Pointers P1 and P2 to the barrier and current component of a doubly

linked list are given. Also an integer N (> 0) and a sequence of N integers are

given. Using the TListB type (see Dynamic74), write a procedure

LBInsertFirst(L, D) that inserts a new component with the value D at the

beginning of a list L (a record L of TListB type is an input and output

parameter, an integer D is an input parameter). The component being inserted

becomes the current component of the list. Using this procedure, insert all

elements of the given sequence at the beginning of the given list (a component

with the last value must be the first component of the resulting list). Output the

new address of the current component of the resulting list.

Dynamic76. Pointers P1 and P2 to the barrier and current component of a doubly

linked list and five integers are given. Using the TListB type (see Dynamic74),

write a procedure LBInsertBefore(L, D) that inserts a new component with the

value D before the current component of a list L (a record L of TListB type is

an input and output parameter, an integer D is an input parameter). The

component being inserted becomes the current component of the list. Using

this procedure, insert five given integers into the given list. Output the new

address of the current component of the resulting list.

Dynamic77. Pointers P1 and P2 to the barrier and current component of a doubly

linked list and five integers are given. Using the TListB type (see Dynamic74),

write a procedure LBInsertAfter(L, D) that inserts a new component with the

value D after the current component of a list L (a record L of TListB type is an

input and output parameter, an integer D is an input parameter). The

component being inserted becomes the current component of the list. Using

114

this procedure, insert five given integers into the given list. Output the new

address of the current component of the resulting list.

Dynamic78. Pointers P1 and P2 to the barrier and current component of a doubly

linked list are given. Using the TListB type (see Dynamic74), write three

procedures: a procedure LBToFirst(L) makes the first component of a list L the

current one; a procedure LBToNext(L) makes the component, which follows

the current component of a list L, the new current one; a procedure

LBSetData(L, D) assigns a new integer value D to the current component of a

list L (provided that the current component is not the barrier one). Also write a

logical function IsBarrier(L) that returns True if the current component of a

list L is the barrier component, and False otherwise. A record L of TListB type

is an input and output parameter of the LBToFirst and LBToNext procedure

and is an input parameter of the LBSetData procedure and the IsBarrier

function. Using these procedures and function, assign zero value to the list

components with odd order numbers. Output the amount of list components

and the address of the current component of the resulting list (the current

component should be the barrier one). The components are numbered from the

first component, which has the order number 1; the barrier component is not

numbered and should not be counted.

Dynamic79. Pointers P1 and P2 to the barrier and current component of a doubly

linked list are given. Using the TListB type (see Dynamic74), write two

procedures: a procedure LBToLast(L) makes the last component of a list L the

current one; a procedure LBToPrev(L) makes the component, which precedes

the current component of a list L, the new current one. Also write an integer

function LBGetData(L) that returns the value of the current component of a

list L. A record L of TListB type is an input and output parameter of the

LBToLast and LBToPrev procedure and is an input parameter of the

LBGetData function. Using these procedures and function and also the

IsBarrier function from the task Dynamic78, browse all list components from

the end toward the beginning of the list and output their values that are even

numbers. Also output the amount of list components. The barrier component

should not be processed and counted.

Dynamic80. Pointers P1 and P2 to the barrier and current component of a nonempty

doubly linked list are given; the current component is not the barrier one.

Using the TListB type (see Dynamic74), write an integer function

LBDeleteCurrent(L) that removes the current component of a list L, releases

memory allocated for the component being removed, and returns the value of

this component (a record L of TListB type is an input and output parameter). If

the next component of the list L is not the barrier one then it becomes the new

current component, otherwise the previous component becomes the new

current one. If the current component is the barrier one then the function

performs no actions and returns 0. Using this function and also the IsBarrier

function from the task Dynamic78, remove five components from the given

115

list (or all components if their amount is less than five) and output their values.

Also output the new address of the current component of the resulting list.

20. Dynamic data structures (based on objects)

All numbers mentioned in tasks of this group are of integer type. All objects

are of Node type; this class is defined in Programming Taskbook. In the tasks of this

group the Data, Next, and Prev properties of the Node class are used. Therefore one

can assume that the Node class contains the following public members:

[C#]
// Constructors:

 public Node();

 public Node(int aData);

 public Node(int aData, Node aNext);

 public Node(int aData, Node aNext, Node aPrev);

// Properties (available to read and to write):

 public int Data;

 public Node Next;

 public Node Prev;

// Method that releases resources used by the Node object:

 public void Dispose();

[VB.NET]
' Constructors:

 Public Sub New()

 Public Sub New(aData As Integer)

 Public Sub New(aData As Integer, aNext As Node)

 Public Sub New(aData As Integer, aNext As Node, _

 aPrev As Node)

' Properties (available to read and to write):

 Public Property Data() As Integer

 Public Property Next() As Node

 Public Property Prev() As Node

' Method that releases resources used by the Node object:

 Public Sub Dispose() Implements IDisposable.Dispose

[Java]
// Constructors:

 Node();

 Node(int aData);

 Node(int aData, Node aNext);

 Node(int aData, Node aNext, Node aPrev);

// Accessors to properties:

 int getData();

 void setData(int value);

 Node getNext();

 void setNext(Node value);

 Node getPrev();

116

 void setPrev(Node value);

// Method that releases resources used by the Node object:

 void dispose();

[Python]
Constructor:

 Node(data = 0, next = None, prev = None)

Properties (available to read and to write):

 Data

 Next

 Prev

Method that releases resources used by the Node object:

 dispose()

[Ruby]
Constructors:

 Node.new()

 Node.new(data)

 Node.new(data, next)

 Node.new(data, next, prev)

Properties (available to read and to write):

 data

 next

 prev

Method that releases resources used by the Node object:

 dispose()

In the introductory tasks and in the tasks devoted to stacks and queues the Prev

property of the Node class is not used. In the tasks devoted to lists all properties

(Data, Next, Prev) of the Node class are used.

All these languages use the reference object model; that is, any object variable

is a reference to the object instance. Therefore, the expression ―output the reference

to a node‖ means that you should output the value of a corresponding variable of the

Node type.

The order number of the first node of a list is assumed to be equal to 1.

20.1. Nodes and chains of nodes

ObjDyn1. An object A1 of the Node class is given. The class contains public

properties Data (of integer type) and Next (of Node type). The given object is

linked by its Next property with the next object of the same type (that is, the

Next property of the given object contains the reference to the next object).

Output the value of the Data property for each object, and also output a

reference to the object A2 that follows the given object.

ObjDyn2. An object A1 of Node type is given. The object is linked by its Next

property with the next object of the same type, that object is linked with the

next one, and so on, until the last object whose Next property equals null (as a

result, we obtain a chain of linked objects). Output the value of the Data

117

property for each chain component, the chain length (that is, the amount of its

components) and a reference to the last chain component.

20.2. Stack

In these tasks a stack structure is implemented by a chain of linked

components (nodes) that are instances of the Node class. The Next property of the

last node equals null. The first node is said to be a top of the stack. The stack data can

be accessed by means of the object variable (of the Node class) that refers to the top

of the stack; if the stack is empty then this variable equals null. The value of the Data

property of a stack component is considered as the value of this component.

ObjDyn3. An integer D and the top A1 of a nonempty stack are given. Push a

component with the value D onto the stack and output a reference A2 to a new

top of the stack.

ObjDyn4. An integer N (> 0) and a sequence of N integers are given. Create a stack

that contains N components with the given values (a component with the last

value must be the top of the stack) and output a reference to the top of the

stack.

ObjDyn5. The top A1 of a nonempty stack is given. Pop the top component off the

stack and output its value D and a reference A2 to a new top of the stack. If the

stack will be empty after popping the component then A2 must be equal to null.

After popping the component release resources allocated for this component;

for this purpose call its Dispose method.

ObjDyn6. The top A1 of a stack is given; the stack contains at least ten components.

Pop the first nine components off the stack and output their values and a

reference A2 to a new top of the stack. After popping components release

resources allocated for these components; for this purpose call the Dispose

method for each of them.

ObjDyn7. The top A1 of a stack is given (if the stack is empty then A1 equals null).

Pop all components off the stack and output their values. Also output the

amount of popped components (if the stack is empty then output 0). After

popping components release resources allocated for these components; for this

purpose call the Dispose method for each of them.

ObjDyn8. The tops A1 and A2 of two nonempty stacks are given. Move all

components from the first stack into the second one (as a result, all

components of the first stack will be contained within the second stack in

inverse order). Output a reference to a new top of the second stack. Do not

create new instances of the Node class.

ObjDyn9. The tops A1 and A2 of two nonempty stacks are given. Move components

from the first stack into the second one until the value of the top component of

the first stack is equal to an even number (as a result, all components having

been moved will be contained within the second stack in inverse order). If the

first stack contains no components with even values then move all its

118

components. Output a reference to a new top for each stack (if the first stack

will be empty then output null for this stack). Do not create new instances of

the Node class.

ObjDyn10. The top A1 of a nonempty stack is given. Create two new stacks by

moving the given stack components whose values are even (odd) numbers into

the first (second) new stack respectively. As a result, all components having

been moved will be contained within each new stack in inverse order; one of

the new stacks may be empty. Output a reference to the top for each new stack

(if one of the new stacks will be empty then output null for this stack). Do not

create new instances of the Node class.

ObjDyn11. The top A1 of a stack is given (if the stack is empty then A1 equals null).

Also an integer N (> 0) and a sequence of N integers are given. Define a new

class called IntStack that contains the following members:

• a private field, top, of Node type (this field refers to the top of the

stack);

• a constructor with the parameter aTop of Node type (this parameter

refers to the top of some existing stack);

• a procedure Push(D) that pushes a new component with the value D

onto the stack (an integer D is an input parameter);

• a procedure Put that output a reference to the top field by means of

the Put method of the PT class (this procedure has no parameters).

Using the Push method, push all elements of the given sequence onto the given

stack (the last number must be the value of the top component). Using the Put

method of the IntStack class, output a reference to a new top of the stack.

ObjDyn12. The top A1 of a stack is given; the stack contains at least five

components. Include an integer function Pop in the IntStack class (see

ObjDyn11); this function pops the top component off the stack, calls the

Dispose method for this component, and returns the value of the popped

component. The function has no parameters. Using this function, pop five

components off the given stack and output their values. Also output a reference

to a new top of the stack (if the stack will be empty then this reference must be

equal to null).

ObjDyn13. The top A1 of a stack is given. Include two functions in the IntStack class

(see ObjDyn11): a logical function IsEmpty returns true if the stack is empty,

and false otherwise; an integer function Peek returns the value of the top

component of the stack. The functions have no parameters. Using these

functions and the Pop function from the task ObjDyn12, pop five components

(or all stack components if their amount is less than five) off the given stack

and output their values. Also output the return value of the IsEmpty function

for the resulting stack. At last, in the case of the nonempty resulting stack,

output the value of its top component and a reference to this component.

119

20.3. Queue

In these tasks a queue structure is implemented by a chain of linked

components (nodes) that are instances of the Node class. The Next property of the

last node equals null. The first node is said to be a head of the queue; the head is

located at the front of the queue. The last node is said to be a tail of the queue; the tail

is located at the end of the queue. It is convenient to store not only a reference to the

queue head but also a reference to the queue tail because it accelerates adding a new

component to the end of a queue. If a queue is empty then these references equal null.

The value of the Data property of a queue component is considered as the value of

this component.

ObjDyn14. A sequence of 10 integers is given. Create a queue that contains

components with the given values (a component with the first value must be

the head of the queue, a component with the last value must be the tail of the

queue) and output references A1 and A2 to the head and tail of the queue

respectively.

ObjDyn15. A sequence of 10 integers is given. Create two queues; the first one must

contain the given integers with odd order numbers (1, 3, …, 9), the second one

must contain the given integers with even order numbers (2, 4, …, 10). Output

references to the head and tail of the first queue and then output references to

the head and tail of the second one.

ObjDyn16. A sequence of 10 integers is given. Create two queues; the first one must

contain the given integers with odd values (in the same order), the second one

must contain the given integers with even values (in the same order). Output

references to the head and tail of the first queue and then output references to

the head and tail of the second one (if one of the queues will be empty then

output null twice for this queue).

ObjDyn17. An integer D and references A1 and A2 to the head and tail of a queue are

given (if the queue is empty then the references equal null). Add a component

with the value D to the end of the queue and output references to the head and

tail of the resulting queue.

ObjDyn18. An integer D and references A1 and A2 to the head and tail of a queue are

given; the queue contains at least two components. Add a component with the

value D to the end of the queue and remove the first component from the front

of the queue. Output the value of the component being removed and also

output references to the head and tail of the resulting queue. After removing

the component call its Dispose method.

ObjDyn19. An integer N (> 0) and references A1 and A2 to the head and tail of a

nonempty queue are given. Remove N initial components from the queue and

output their values (if the queue contains less than N components then remove

all its components). Also output references to the head and tail of the resulting

queue (if the queue will be empty then output null twice). After removing

components call the Dispose method for each of them.

120

ObjDyn20. References A1 and A2 to the head and tail of a nonempty queue are given.

Remove components from the front of the queue until the value of the head of

the queue is equal to an even number; output values of all components being

removed (if the queue contains no components with even values then remove

all its components). Also output references to the head and tail of the resulting

queue (if the queue will be empty then output null twice). After removing

components call the Dispose method for each of them.

ObjDyn21. Two queues are given; references A1 and A2 refer to the head and tail of

the first one, references A3 and A4 refer to the head and tail of the second one

(if some queue is empty then the corresponding references equal null). Move

all components from the first queue (starting with its first component) to the

end of the second one. Output references to the head and tail of the changed

second queue. Do not create new instances of the Node class.

ObjDyn22. An integer N (> 0) and two nonempty queues are given; references A1

and A2 refer to the head and tail of the first one, references A3 and A4 refer to

the head and tail of the second one. Move N initial components of the first

queue to the end of the second one (if the first queue contains less than

N components then move all its components). Output references to the head

and tail of the first queue and then output references to the head and tail of the

second one (if the first queue will be empty then output null twice for this

queue). Do not create new instances of the Node class.

ObjDyn23. Two nonempty queues are given; references A1 and A2 refer to the head

and tail of the first one, references A3 and A4 refer to the head and tail of the

second one. Move initial components of the first queue to the end of the

second one until the value of the head of the first queue is equal to an even

number (if the first queue contains no components with even values then move

all its components). Output references to the head and tail of the first queue

and then output references to the head and tail of the second one (if the first

queue will be empty then output null twice for this queue). Do not create new

instances of the Node class.

ObjDyn24. Two nonempty queues are given; references A1 and A2 refer to the head

and tail of the first one, references A3 and A4 refer to the head and tail of the

second one. The queues contain the equal amount of components. Combine the

given queues into a new one; the resulting queue must contain alternating

components of the given queues starting with the head of the first one. Output

references to the head and tail of the resulting queue. Do not create new

instances of the Node class.

ObjDyn25. Two nonempty queues are given; references A1 and A2 refer to the head

and tail of the first one, references A3 and A4 refer to the head and tail of the

second one. The values of components of each given queue are in ascending

order. Combine the given queues into a new one; the values of components of

the resulting queue must be in ascending order too. Output references to the

121

head and tail of the resulting queue. Do not create new instances of the Node

class; do not change the Data properties.

ObjDyn26. References A1 and A2 to the head and tail of a queue are given (if the

queue is empty then the references equal null). Also an integer N (> 0) and a

sequence of N integers are given. Define a class called IntQueue that contains

the following members:

• two private fields, head and tail, of Node type (these fields refer to

the head and tail of the queue respectively);

• a constructor with the parameters aHead and aTail of Node type

(these parameters refer to the head and tail of some existing queue);

• a procedure Enqueue(D) that adds a new component with the value D

to the end of the queue (an integer D is an input parameter);

• a procedure Put that output references to the head and tail fields by

means of the Put method of the PT class (this procedure has no

parameters).

Using the Enqueue method, add all elements of the given sequence to the end

of the given queue. Using the Put method of the IntQueue class, output

references to the head and tail of the resulting queue.

ObjDyn27. References A1 and A2 to the head and tail of a queue are given; the queue

contains at least five components. Include an integer function Dequeue in the

IntQueue class (see ObjDyn26); this function removes the first component

from the front of the queue, calls the Dispose method for this component, and

returns the value of the removed component. The function has no parameters.

Using this function, remove five initial components from the front of the given

queue and output their values. Also output references to the head and tail of the

queue (if the queue will be empty then output null twice).

ObjDyn28. References A1 and A2 to the head and tail of a queue are given. Include a

logical function IsEmpty in the IntQueue class (see ObjDyn26); this function

returns true if the queue is empty, and false otherwise. The function has no

parameters. Using this function and also the Dequeue function from the task

ObjDyn27, remove five initial components (or all queue components if their

amount is less than five) from the front of the given queue and output their

values. Also output the return value of the IsEmpty function for the resulting

queue and references to the head and tail of this queue (if the queue will be

empty then output null twice).

20.4. Doubly linked list

In these tasks a doubly linked list structure is implemented by a chain of

components (nodes) of the Node class; these nodes are linked with both the next node

and the previous one. The Next property of the last node and the Prev property of the

first node are equal to null. Though storing of a reference to some list node is

sufficient to provide access to any list node, it is convenient to store three references

(to the first, last, and current list node) because they accelerate list operations. If a list

122

is empty then these references equal null. The value of the Data property of a list

component is considered as the value of this component.

ObjDyn29. An object A2 of the Node class is given. The class contains public

properties Data (of integer type), Prev and Next (each of Node type). The

given object is linked by its Prev and Next properties with the previous and

next object of the same type respectively (that is, the Prev and Next properties

of the given object contain references to the previous and next object). Output

the values of the Data property for the previous and next object, and also

output references A1 and A3 to the previous and next object.

ObjDyn30. A reference A1 to the beginning of a chain of objects is given; objects

have the Node type and are linked by their Next property. Using the Prev

property of the Node class, transform the given (singly linked) chain into the

doubly linked chain whose components are linked not only with the next ones

(by the Next property) but also with the previous ones (by the Prev property).

The Prev property of the first chain component must be equal to null. Output a

reference A2 to the last component of the resulting chain.

ObjDyn31. A reference A0 to one of the components of a nonempty doubly linked

list is given. Output the amount N of the list components and also references A1

and A2 to the first and last component respectively.

ObjDyn32. Two integers D1, D2 and a reference A0 to one of the components of a

nonempty doubly linked list are given. Insert a new component with the

value D1 at the beginning of the list; insert a new component with the value D2

at the end of the list. Output references to the first and last list component.

ObjDyn33. An integer D and a reference A0 to one of the components of a nonempty

doubly linked list are given. Insert a new component with the value D before

the given list component. Output a reference to the component being inserted.

ObjDyn34. An integer D and a reference A0 to one of the components of a nonempty

doubly linked list are given. Insert a new component with the value D after the

given list component. Output a reference to the component being inserted.

ObjDyn35. References A1 and A2 to the first and last component of a doubly linked

list are given. The list contains at least two components. Double occurrences of

the first and last list components (new components must be inserted before the

existing ones with the same value). Output a reference to the first component

of the resulting list.

ObjDyn36. References A1 and A2 to the first and last component of a doubly linked

list are given. The list contains at least two components. Double occurrences of

the first and last list components (new components must be inserted after the

existing ones with the same value). Output a reference to the last component of

the resulting list.

ObjDyn37. A reference A1 to the first component of a nonempty doubly linked list is

given. Double occurrences of all list components with odd order numbers (new

123

components must be inserted before the existing ones with the same value).

Output a reference to the first component of the resulting list.

ObjDyn38. A reference A1 to the first component of a nonempty doubly linked list is

given. Double occurrences of all list components with odd order numbers (new

components must be inserted after the existing ones with the same value).

Output a reference to the last component of the resulting list.

ObjDyn39. A reference A1 to the first component of a nonempty doubly linked list is

given. Double occurrences of all list components with odd values (new

components must be inserted before the existing ones with the same value).

Output a reference to the first component of the resulting list.

ObjDyn40. A reference A1 to the first component of a nonempty doubly linked list is

given. Double occurrences of all list components with odd values (new

components must be inserted after the existing ones with the same value).

Output a reference to the last component of the resulting list.

ObjDyn41. A reference A0 to one of the components of a nonempty doubly linked

list is given. Remove this component from the list and output references to its

previous and next component in the list (one or both these components may be

absent; output null for each absent component). After removing the component

call its Dispose method.

ObjDyn42. A reference A1 to the first component of a doubly linked list is given. The

list contains at least two components. Remove all components with odd order

numbers from the list and output a reference to the first component of the

resulting list. After removing components call the Dispose method for each of

them.

ObjDyn43. A reference A1 to the first component of a nonempty doubly linked list is

given. Remove all components with odd values from the list and output a

reference to the first component of the resulting list (if this list will be empty

then output null). After removing components call the Dispose method for

each of them.

ObjDyn44. A reference A0 to one of the components of a nonempty doubly linked

list is given. Move this component to the end of the list and output references

to the first and last component of the resulting list. Do not create new instances

of the Node class; do not change the Data properties.

ObjDyn45. A reference A0 to one of the components of a nonempty doubly linked

list is given. Move this component to the beginning of the list and output

references to the first and last component of the resulting list. Do not create

new instances of the Node class; do not change the Data properties.

ObjDyn46. An integer K (> 0) and a reference A0 to one of the components of a

nonempty doubly linked list are given. Move this component by K positions

forward in the list (if the list contains less than K components after the given

component then move it to the end of the list). Output references to the first

124

and last component of the resulting list. Do not create new instances of the

Node class; do not change the Data properties.

ObjDyn47. An integer K (> 0) and a reference A0 to one of the components of a

nonempty doubly linked list are given. Move this component by K positions

backward in the list (if the list contains less than K components before the

given component then move it to the beginning of the list). Output references

to the first and last component of the resulting list. Do not create new instances

of the Node class; do not change the Data properties.

ObjDyn48. References AX and AY to different components of a doubly linked list are

given. The component AX precedes the component AY in the list but need not be

adjacent with it. Exchange the given components in the list and output a

reference to the first component of the resulting list. Do not create new

instances of the Node class; do not change the Data properties.

ObjDyn49. A reference A1 to the first component of a nonempty doubly linked list is

given. Rearrange list components by moving all components with odd order

numbers to the end of the list (in the same order). Output a reference to the

first component of the resulting list. Do not create new instances of the Node

class; do not change the Data properties.

ObjDyn50. A reference A1 to the first component of a nonempty doubly linked list is

given. Rearrange list components by moving all components with odd values

to the end of the list (in the same order). Output a reference to the first

component of the resulting list. Do not create new instances of the Node class;

do not change the Data properties.

ObjDyn51. Two nonempty doubly linked lists are given; references A1 and A2 refer

to the first and last component of the first list, a reference A0 refers to one of

the components of the second list. Combine the given lists by inserting all

components of the first list (in the same order) before the given component of

the second list. Output references to the first and last component of the

combined list. Do not create new instances of the Node class.

ObjDyn52. Two nonempty doubly linked lists are given; references A1 and A2 refer

to the first and last component of the first list, a reference A0 refers to one of

the components of the second list. Combine the given lists by inserting all

components of the first list (in the same order) after the given component of

the second list. Output references to the first and last component of the

combined list. Do not create new instances of the Node class.

ObjDyn53. References AX and AY to different components of a doubly linked list are

given. The component AX precedes the component AY in the list but need not be

adjacent with it. Move list components that are located between the given

components (including these components) to a new list (in the same order).

Output references to the first components of the changed and new list. If the

changed list will be empty then output null for this list. Do not create new

instances of the Node class.

125

ObjDyn54. References AX and AY to different components of a doubly linked list are

given. The component AX precedes the component AY in the list but need not be

adjacent with it. Move list components that are located between the given

components (not including these components) to a new list (in the same order).

Output references to the first components of the changed and new list. If the

new list will be empty then output null for this list. Do not create new

instances of the Node class.

ObjDyn55. A reference A1 to the first component of a nonempty doubly linked list is

given. Transform this list to the circular one by assigning the first component

reference to the Next property of the last component and the last component

reference to the Prev property of the first component. Output a reference to the

component that has been the last component of the given list.

ObjDyn56. References A1 and A2 to the first and last component of a doubly linked

list are given. The amount of list components is an even number. Split the list

into two circular lists (see ObjDyn55); the first (second) resulting list must

contain the first (second) half of components of the given list respectively.

Output references A3 and A4 to two middle components of the given list; the

object A3 must be contained in the first resulting circular list, the object A4

must be contained in the second one. Do not create new instances of the Node

class.

ObjDyn57. An integer K (> 0) and references A1 and A2 to the first and last

component of a nonempty doubly linked list are given. Perform a cyclic shift

of all list components by K positions forward (that is, from the beginning

toward the end of the list). Output references to the first and last component of

the resulting list. The required shift should be performed as follows: transform

the given list to the circular one (see ObjDyn55) and then break this circular

list at the position that corresponds to the given value of K. Do not create new

instances of the Node class.

ObjDyn58. An integer K (> 0) and references A1 and A2 to the first and last

component of a nonempty doubly linked list are given. Perform a cyclic shift

of all list components by K positions backward (that is, from the end toward

the beginning of the list). Output references to the first and last component of

the resulting list. The required shift should be performed as follows: transform

the given list to the circular one (see ObjDyn55) and then break this circular

list at the position that corresponds to the given value of K. Do not create new

instances of the Node class.

ObjDyn59. References A1, A2, and A3 to the first, last, and current component of a

doubly linked list are given (if the list is empty then the references equal null).

Also an integer N (> 0) and a sequence of N integers are given. Define a new

class called IntList that contains the following members:

• three private fields—first, last, current—of Node type (these fields

refer to the first, last, and current component of the list respectively);

• a constructor with the parameters aFirst, aLast, aCurrent of Node

126

type (these parameters refer to the first, last, and current component of

some existing list);

• a procedure InsertLast(D) that inserts a new component with the

value D at the end of the list (an integer D is an input parameter; the

component being inserted becomes the current component of the list);

• a procedure Put that output references to the fields first, last, and

current by means of the Put method of the PT class (this procedure has

no parameters).

Using the InsertLast method, insert all elements of the given sequence at the

end of the given list (in the same order). Using the Put method of the IntList

class, output references to the first, last, and current component of the resulting

list.

ObjDyn60. References A1, A2, and A3 to the first, last, and current component of a

doubly linked list are given (if the list is empty then the references equal null).

Also an integer N (> 0) and a sequence of N integers are given. Include a

procedure InsertFirst(D) in the IntList class (see ObjDyn59); this procedure

inserts a new component with the value D at the beginning of the list (an

integer D is an input parameter). The component being inserted becomes the

current component of the list. Using this procedure, insert all elements of the

given sequence at the beginning of the given list (a component with the last

value must be the first component of the resulting list). Output references to

the first, last, and current component of the resulting list.

ObjDyn61. References A1, A2, and A3 to the first, last, and current component of a

nonempty doubly linked list and five integers are given. Include a procedure

InsertBefore(D) in the IntList class (see ObjDyn59); this procedure inserts a

new component with the value D before the current component of the list (an

integer D is an input parameter). The component being inserted becomes the

current component of the list. Using this procedure, insert five given integers

into the given list. Output references to the first, last, and current component of

the resulting list.

ObjDyn62. References A1, A2, and A3 to the first, last, and current component of a

nonempty doubly linked list and five integers are given. Include a procedure

InsertAfter(D) in the IntList class (see ObjDyn59); this procedure inserts a new

component with the value D after the current component of the list (an

integer D is an input parameter). The component being inserted becomes the

current component of the list. Using this procedure, insert five given integers

into the given list. Output references to the first, last, and current component of

the resulting list.

ObjDyn63. References A1, A2, and A3 to the first, last, and current component of a

nonempty doubly linked list are given. Include four methods in the IntList

class (see ObjDyn59): a procedure ToFirst makes the first component of the

list the current one; a procedure ToNext makes the component, which follows

the current component of the list, the new current one (provided that such a

127

component exists); a procedure SetData(D) assigns a new integer value D to

the current component of the list (an integer D is an input parameter); a logical

function IsLast returns true if the current component of the list is the last

component, and false otherwise. The ToFirst, ToNext, IsLast methods have no

parameters. Using these methods, assign zero value to the list components with

odd order numbers. Output the amount of list components and also output

references to the first, last, and current component of the resulting list (the

current component should be the last one).

ObjDyn64. References A1, A2, and A3 to the first, last, and current component of a

nonempty doubly linked list are given. Include four methods in the IntList

class (see ObjDyn59): a procedure ToLast makes the last component of the list

the current one; a procedure ToPrev makes the component, which precedes the

current component of the list, the new current one (provided that such a

component exists); an integer function GetData returns the value of the current

component of the list; a logical function IsFirst returns true if the current

component of the list is the first component, and false otherwise. All these

methods have no parameters. Using these methods, browse all list components

(from the end toward the beginning of the list) and output their values that are

even numbers. Also output the amount of list components.

ObjDyn65. References A1, A2, and A3 to the first, last, and current component of a

doubly linked list are given. The list contains at least five components. Include

an integer function DeleteCurrent in the IntList class (see ObjDyn59); this

function removes the current component of the list, calls the Dispose method

for this component, and returns the value of the removed component. The

function has no parameters. If the next component of the list exists then it

becomes the new current component, otherwise the last component becomes

the new current one. Using this function, remove five components from the

given list and output their values. Also output references to the first, last, and

current component of the resulting list (if the resulting list will be empty then

output null three times).

ObjDyn66. References A1, A2, and A3 to the first, last, and current component of a

nonempty doubly linked list are given. Include a procedure Split(L1, L2) as a

class method in the IntList class (see ObjDyn59); this procedure moves some

components of a list L1 into a new list L2: components between the current and

last component inclusively must be moved (as a result, the list L1 will be split

into two parts; the first part may be empty). An object L1 of IntList type is an

input parameter, an object L2 of the same type is an output parameter. The first

component of each nonempty resulting list becomes the current component of

this list. The procedure should not create new instances of the Node class.

Using this procedure, split the given list into two lists and output references to

the first, last, and current component of each resulting list.

ObjDyn67. References to the first, last, and current component of two nonempty

doubly linked lists are given. Include a procedure Add(L1, L2) as a class

128

method in the IntList class (see ObjDyn59); this procedure inserts all

components of a list L1 (in the same order) at the end of a list L2; as a result,

the list L1 will be empty. The first component being inserted becomes the

current component of the list L2. Objects L1 and L2 of IntList type are input

parameters. The procedure should not create new instances of the Node class.

Using this procedure, insert the first given list at the end of the second one and

output references to the first, last, and current component of the combined list.

ObjDyn68. References to the first, last, and current component of two nonempty

doubly linked lists are given. Include a procedure Insert(L1, L2) as a class

method in the IntList class (see ObjDyn59); this procedure inserts all

components of a list L1 (in the same order) before the current component of a

list L2; as a result, the list L1 will be empty. The first component being inserted

becomes the current component of the list L2. Objects L1 and L2 of IntList type

are input parameters. The procedure should not create new instances of the

Node class. Using this procedure, insert the first given list before the current

component of the second one and output references to the first, last, and

current component of the combined list.

ObjDyn69. References to the first, last, and current component of two doubly linked

lists are given; the second list may be empty. Include a procedure

MoveCurrent(L1, L2) as a class method in the IntList class (see ObjDyn59);

this procedure removes the current component from a list L1 and inserts this

component after the current component of a list L2. If the next component of

the list L1 exists then it becomes the new current component of this list,

otherwise the last component becomes the new current one; the component

being inserted becomes the current component of the list L2. Objects L1 and L2

of IntList type are input parameters. The procedure should not create new

instances of the Node class. Using this procedure, move the current component

of the first given list into the second one and output references to the first, last,

and current component of each resulting list (if the first resulting list will be

empty then output null three times for this list).

20.5. List with the barrier component

In these tasks a doubly linked list structure is implemented by a circular

doubly linked chain of nodes with an additional barrier node (the barrier component

of a list). This barrier node is linked with the first and last ―true‖ list component by

the Next and Prev property respectively; similarly, the first/last ―true‖ list component

is linked with the barrier node by the Prev/Next property respectively. Such a list

implementation allows to store only two references (to the barrier and current list

component) for list processing. The Data property of the barrier component may be

of any value; for definiteness the value of this property is considered to equal zero.

Both some ―true‖ list component and the barrier component may be the current

component. An empty list in this implementation is represented as a single barrier

129

node linked with itself; the current component of an empty list is always the barrier

component.

ObjDyn70. References A1 and A2 to the first and last component of a doubly linked

list are given (a doubly linked list is implemented by a chain of linked nodes of

Node type, the Prev property of the first node and the Next property of the last

node are equal to null); if the list is empty then the references equal null.

Transform the given list into the circular list (see ObjDyn55) with a barrier

component. The barrier component has zero value and is linked with the first

and last component of the given list by the Next and Prev property respectively

(if the given list is empty then the Next and Prev properties of the barrier

component must refer to the barrier component itself). Output a reference to

the barrier component of the resulting list. Do not create new instances of the

Node class except the barrier component.

ObjDyn71. References A1 and A2 to the barrier and current component of a doubly

linked list are given (see the barrier component definition in ObjDyn70).

Move the given list components that are between the current and last

component (inclusively) to a new list with the barrier component. If the current

component of the given list is its barrier component then the new list must be

empty (that is, it must contain the barrier component only). Output a reference

to the barrier component of the new list. Do not create new instances of the

Node class except the barrier component of the new list.

ObjDyn72. References A1 and A2 to the barrier components of two doubly linked lists

are given (see the barrier component definition in ObjDyn70). Combine the

given lists by linking the last component of the first list with the first

component of the second list. Use the barrier component of the first list as the

barrier component of the combined list. Output references to the first and last

component of the combined list (if the combined list will be empty then output

a reference to its barrier component twice). After removing the superfluous

barrier component (of the second list) call its Dispose method.

ObjDyn73. References A1 and A2 to the barrier components of two doubly linked lists

are given (see the barrier component definition in ObjDyn70). Combine the

given lists by linking the last component of the first list with the first

component of the second list. Use the barrier component of the second list as

the barrier component of the combined list. Output references to the first and

last component of the combined list (if the combined list will be empty then

output a reference to its barrier component twice). After removing the

superfluous barrier component (of the first list) call its Dispose method.

ObjDyn74. References A1 and A2 to the barrier and current component of a doubly

linked list are given (see the barrier component definition in ObjDyn70). Also

an integer N (> 0) and a sequence of N integers are given. Define a new class

called IntListB that contains the following members:

• two private fields, barrier and current, of Node type (these fields

refer to the barrier and current component of the list respectively);

130

• a constructor with the parameters aBarrier and aCurrent of Node

type (these parameters refer to the barrier and current component of

some existing list);

• a procedure InsertLast(D) that inserts a new component with the

value D at the end of the list (an integer D is an input parameter; the

component being inserted becomes the current component of the list);

• a procedure Put that output a reference to the current field by means

of the Put method of the PT class (this procedure has no parameters).

Using the InsertLast method, insert all elements of the given sequence at the

end of the given list (in the same order). Using the Put method of the IntListB

class, output a reference to the current component of the resulting list.

ObjDyn75. References A1 and A2 to the barrier and current component of a doubly

linked list are given. Also an integer N (> 0) and a sequence of N integers are

given. Include a procedure InsertFirst(D) in the IntListB class (see ObjDyn74);

this procedure inserts a new component with the value D at the beginning of

the list (an integer D is an input parameter). The component being inserted

becomes the current component of the list. Using this procedure, insert all

elements of the given sequence at the beginning of the given list (a component

with the last value must be the first component of the resulting list). Output a

reference to the current component of the resulting list.

ObjDyn76. References A1 and A2 to the barrier and current component of a doubly

linked list and five integers are given. Include a procedure InsertBefore(D) in

the IntListB class (see ObjDyn74); this procedure inserts a new component

with the value D before the current component of the list (an integer D is an

input parameter). The component being inserted becomes the current

component of the list. Using this procedure, insert five given integers into the

given list. Output a reference to the current component of the resulting list.

ObjDyn77. References A1 and A2 to the barrier and current component of a doubly

linked list and five integers are given. Include a procedure InsertAfter(D) in

the IntListB class (see ObjDyn74); this procedure inserts a new component

with the value D after the current component of the list (an integer D is an

input parameter). The component being inserted becomes the current

component of the list. Using this procedure, insert five given integers into the

given list. Output a reference to the current component of the resulting list.

ObjDyn78. References A1 and A2 to the barrier and current component of a doubly

linked list are given. Include four methods in the IntListB class (see

ObjDyn74): a procedure ToFirst makes the first component of the list the

current one; a procedure ToNext makes the component, which follows the

current component of the list, the current one; a procedure SetData(D) assigns

a new integer value D to the current component of the list provided that the

current component is not the barrier one (an integer D is an input parameter); a

logical function IsBarrier returns true if the current component of the list is the

barrier component, and false otherwise. The ToFirst, ToNext, IsBarrier

131

methods have no parameters. Using these methods, assign zero value to the list

components with odd order numbers. Output the amount of list components

and a reference to the current component of the resulting list (the current

component should be the barrier one). The components are numbered from the

first component, which has the order number 1; the barrier component is not

numbered and should not be counted.

ObjDyn79. References A1 and A2 to the barrier and current component of a doubly

linked list are given. Include three methods in the IntListB class (see

ObjDyn74): a procedure ToLast makes the last component of the list the

current one; a procedure ToPrev makes the component, which precedes the

current component of the list, the new current one; an integer function GetData

returns the value of the current component of the list. All these methods have

no parameters. Using these methods and also the IsBarrier function from the

task ObjDyn78, browse all list components from the end toward the beginning

of the list and output their values that are even numbers. Also output the

amount of list components. The barrier component should not be processed

and counted.

ObjDyn80. References A1 and A2 to the barrier and current component of a nonempty

doubly linked list are given; the current component is not the barrier one.

Include an integer function DeleteCurrent in the IntListB class (see

ObjDyn74); this function removes the current component of the list, calls the

Dispose method for this component, and returns the value of the removed

component. The function has no parameters. If the next component of the list

is not the barrier one then it becomes the new current component, otherwise

the previous component becomes the new current one. If the current

component is the barrier one then the function performs no actions and

returns 0. Using this function and also the IsBarrier function from the task

ObjDyn78, remove five components from the given list (or all components if

their amount is less than five) and output their values. Also output a reference

to the current component of the resulting list.

21. Binary trees (based on pointers)

All numbers mentioned in the tasks of this group are of integer type. All

pointers are of PNode type; they point to records of TNode type. In the tasks of this

group the Data, Left, Right, and Parent fields of the TNode record are used, therefore

one can assume that the PNode and TNode types are defined as follows:

[Pascal]
type

 PNode = ^TNode;

 TNode = record

 Data: integer;

 Left: PNode;

 Right: PNode;

132

 Parent: PNode;

 end;

[C++]
struct TNode

{

 int Data;

 TNode* Left;

 TNode* Right;

 TNode* Parent;

};

typedef TNode* PNode;

In the most of the tasks only the Data, Left, and Right fields of the TNode

record are used. The Parent field is required in the tasks devoted to doubly linked

trees.

The value of the Data field of a variable of TNode type is considered as the

value of the corresponding tree node.

In C++ programs the delete p operator or DeleteNode(p) function call should

be used to free the memory that a pointer p (of the PNode type) addresses.

21.1. Analysis

Tree1. An address P1 of a record of TNode type is given. The record consists of the

Data field (of integer type) and the Left and Right fields (of PNode type). The

given record (a tree root) is linked by its Left and Right fields with records of

the same type (named the left and right child nodes respectively). Output the

Data fields of the tree root and its left and right children. Also output the

addresses of left and right child nodes.

Tree2. An address P1 of a record of TNode type (a tree root) is given. This record is

linked by its Left and Right fields with records of the same type (child nodes);

they, in turn, are linked with their own child nodes and so on, until records

whose Left and Right fields are equal to nil. Some of the nodes may have one

field (Left or Right) equals nil. Output the amount of tree nodes.

Tree3. A pointer P1 to the root of a nonempty tree and an integer K are given. Output

the amount of nodes whose value equals K.

Tree4. A pointer P1 to the root of a nonempty tree is given. Output the sum of values

of all tree nodes.

Tree5. A pointer P1 to the root of a nonempty tree is given. Output the amount of left

child nodes (the tree root should not be counted).

Tree6. A pointer P1 to the root of a nonempty tree is given. Nodes without children

are called the external nodes or the leaf nodes (the leaves). Output the amount

of leaf nodes.

Tree7. A pointer P1 to the root of a nonempty tree is given. Output the sum of values

of all tree leaves.

133

Tree8. A pointer P1 to the root of a tree is given, the tree contains at least two nodes.

Output the amount of tree leaves that are the right child nodes.

Tree9. A pointer P1 to the root of a nonempty tree is given. The root node is said to

be on the zero level, its child nodes — on the first level, and so on. Output the

depth of the tree (that is, the maximal level of tree nodes). For example, the

depth of a tree containing only a root node is equal to 0.

Tree10. A pointer P1 to the root of a nonempty tree is given. For each tree level

(including the zero one) output the amount of its nodes. The tree depth is

assumed to be not greater than 10.

Tree11. A pointer P1 to the root of a nonempty tree is given. For each tree level

(including the zero one) output the sum of values of its nodes. The tree depth is

assumed to be not greater than 10.

Tree12. A pointer P1 to the root of a nonempty tree is given. Using the recursive

algorithm named inorder tree walk output the values of all tree nodes as

follows: output the left subtree (using inorder tree walk), then output the root

node, then output the right subtree (using inorder tree walk too).

Tree13. A pointer P1 to the root of a nonempty tree is given. Using the recursive

algorithm named preorder tree walk output the values of all tree nodes as

follows: output the root node, then output the left subtree (using preorder tree

walk), then output the right subtree (using preorder tree walk too).

Tree14. A pointer P1 to the root of a nonempty tree is given. Using the recursive

algorithm named postorder tree walk output the values of all tree nodes as

follows: output the left subtree (using postorder tree walk), then output the

right subtree (using postorder tree walk too), then output the root node.

Tree15. A pointer P1 to the root of a nonempty tree and an integer N (> 0) are given.

The value of N is not greater than the amount of tree nodes. Output the values

of tree nodes whose order numbers are not greater than N (the tree nodes are

numbered from 1 using inorder tree walk — see Tree12).

Tree16. A pointer P1 to the root of a nonempty tree and an integer N (> 0) are given.

The value of N is not greater than the amount of tree nodes. Output the values

of tree nodes whose order numbers are N or greater (the tree nodes are

numbered from 1 using postorder tree walk — see Tree14).

Tree17. A pointer P1 to the root of a nonempty tree and two integers N1, N2

(0 < N1 < N2) are given. The value of N2 is not greater than the amount of tree

nodes. Output the values of tree nodes whose order numbers are in the

range N1 to N2 (the tree nodes are numbered from 1 using preorder tree walk

— see Tree13).

Tree18. A pointer P1 to the root of a nonempty tree and an integer L (≥ 0) are given.

Using tree walk of any type (see Tree12−Tree14) output values of all nodes of

the level L. Also output the amount N of these nodes. If the given tree does not

contain nodes of level L then output 0.

134

Tree19. A pointer P1 to the root of a nonempty tree is given. Output the maximal

value of the tree nodes and the amount of nodes with this value.

Tree20. A pointer P1 to the root of a nonempty tree is given. Output the minimal

value of the tree nodes and the amount of leaves with this value (the amount

may be equal to 0).

Tree21. A pointer P1 to the root of a nonempty tree is given. Output the minimal

value of its leaves.

Tree22. A pointer P1 to the root of a tree is given, the tree contains at least two

nodes. Output the maximal value of its internal nodes (that is, nodes with

children).

Tree23. A pointer P1 to the root of a nonempty tree is given. Using preorder tree

walk, find the first tree node with the minimal value and output its address P2.

Tree24. A pointer P1 to the root of a nonempty tree is given. Using inorder tree walk,

find the last node with the maximal odd value and output its address P2. If the

tree does not contain nodes with odd values then output nil.

21.2. Creation

Tree25. An integer N (> 0) and a sequence of N integers are given. Create a tree with

N nodes and assign values of the given sequence to tree nodes in order of their

creation. Each node of the tree (except for the root) should be a right child.

Output the address of the tree root.

Tree26. An integer N (> 0) and a sequence of N integers are given. Create a tree with

N nodes and assign values of the given sequence to tree nodes in order of their

creation. Each internal node of the tree should have one child: the root has a

left child, which has a right child, which has a left child, and so on. Output the

address of the tree root.

Tree27. An integer N (> 0) and a sequence of N integers are given. Create a tree with

N nodes and assign values of the given sequence to tree nodes in order of their

creation. Each internal node of the tree should have one child: an internal node

whose value is an odd number has a left child, otherwise it has a right child.

Output the address of the tree root.

Tree28. An even integer N (> 0) and a sequence of N integers are given. Create a tree

with N nodes; left child nodes of the tree should be leaves, right child nodes

should be internal ones. For each internal node create a left child at first, then

create a right one (if it exists). Assign values of the given sequence to tree

nodes in order of their creation. Output the address of the tree root.

Tree29. An even integer N (> 0) and a sequence of N integers are given. Create a tree

with N nodes. Inner node whose value is an odd number should have a left

child leaf, otherwise it should have a right child leaf. For each internal node

create a child leaf node at first, and then create a child internal node (if it

exists). Assign values of the given sequence to tree nodes in order of their

creation. Output the address of the tree root.

135

Tree30. An integer N (> 0) is given. Create a tree that satisfies the following

conditions: the value of root node equals N; if the value of a node is an even

number K then this node has only a left child whose value equals K/2; if the

value of a node equals 1 then this node is a leaf; if the value of a node is

another odd number K then this node has a left child whose value equals K/2

and has a right child whose value equals K − K/2 (―/‖ denotes the operator of

integer division). Output the address of the tree root.

Tree31. Two positive integers L, N (N > L) and a sequence of N integers are given.

Create a tree of depth L. Use elements of the given sequence as node values;

add new nodes using the following algorithm: for each node of the level not

greater than L create the node itself, then its left subtree of corresponding

depth, and finally its right subtree. If less than N nodes are required to create

an L-depth tree then do not use the rest of elements of the given sequence.

Output the address of the tree root.

Tree32. An integer N (> 0) and a sequence of N integers are given. Create a

balanced tree with N nodes (that is, a binary tree which satisfies the following

condition: for each tree node the amount of nodes of its left subtree differs at

most on 1 from the amount of nodes of its right subtree) and output the address

of the tree root. Use elements of the given sequence as node values; create the

tree by means of the following recursive algorithm: create a root node, then

repeat the algorithm twice: for creating the left subtree with N/2 nodes and for

creating the right subtree with N − 1 − N/2 nodes (―/‖ denotes the operator of

integer division).

Tree33. An integer N (> 0) is given. Create a balanced tree with N nodes and output

the address of the tree root. The value of each node should be equal to its level

(for example, the root value is 0, the value of its children is 1, and so on).

Create the balanced tree by means of the recursive algorithm described in

Tree32.

Tree34. An address P1 of the root of a nonempty tree is given. Create a copy of the

tree and output the address P2 of its root.

21.3. Changing

Tree35. A pointer P1 to the root of a nonempty tree is given. Double the value of

each tree node.

Tree36. A pointer P1 to the root of a nonempty tree is given. Halve the value of each

tree node whose initial value is an even number.

Tree37. A pointer P1 to the root of a nonempty tree is given. Add 1 to the value of

each tree leaf and subtract 1 from the value of each internal node.

Tree38. A pointer P1 to the root of a nonempty tree is given. For each tree node with

two child swap values of its child nodes (that is, swap values of Data fields of

child nodes).

136

Tree39. A pointer P1 to the root of a nonempty tree is given. Swap child nodes of

each internal node in the tree (that is, swap values of its Left and Right field).

Tree40. A pointer P1 to the root of a nonempty tree is given. Remove all nodes from

the tree (except the root), release the memory allocated for removed nodes, and

assign nil to the Left and Right fields of the root.

Tree41. A pointer P1 to the root of a nonempty tree is given, the tree contains at least

two nodes. Remove all tree leaves and assign nil to the Left and Right fields of

their parents. Release the memory allocated for removed nodes.

Tree42. A pointer P1 to the root of a nonempty tree is given. Remove all nodes

whose value is less than the root value, together with all their descendants.

Release the memory allocated for removed nodes.

Tree43. A pointer P1 to the root of a nonempty tree is given. Apply the following

action to each tree node that has two child nodes: if the node value is an even

number then remove its right child, otherwise remove its left child. Use

preorder tree walk; each node should be removed together with all its

descendants. Release the memory allocated for removed nodes.

Tree44. A pointer P1 to the root of a nonempty tree is given. Add two child nodes to

each tree leaf; the values of left and right child nodes should be equal to 10 and

11 respectively.

Tree45. A pointer P1 to the root of a nonempty tree is given. Add one child node to

each thee leaf; if the leaf value is an odd number then its child should be a left

node, otherwise its child should be a right one. Value of created child node

should be equal to value of its parent.

Tree46. A pointer P1 to the root of a nonempty tree is given. For each tree node with

one child add another child node (a leaf). Value of created child node should

be equal to doubled value of its parent.

Tree47. A pointer P1 to the root of a nonempty tree is given. Transform the given

tree to a perfect tree by adding some new nodes (a perfect tree is a binary tree

whose all leaves are at the same level). Do not change the initial depth of the

tree; value of all new nodes should be equal to −1.

21.4. Doubly linked binary trees

Tree48. An address P1 of a tree node is given. Tree node is a record of TNode type

containing the Data field (of integer type) and the Left, Right, and Parent

fields (of PNode type). The Left and Right fields point to the left and right

child nodes respectively, the Parent field points to the parent node (the Parent

field of the root node equals nil). Output pointers PL, PR to the left and right

child of the given node, P0 to its parent, and P2 to its sibling (siblings are nodes

that have the same parent). If some of required nodes are not exist then output

nil for each absent node.

Tree49. A pointer P1 to the root of a tree is given. Tree nodes are represented by

records of TNode type; they are linked by the Left and Right fields of TNode

137

record. Using the Parent field of TNode record, transform the given tree into a

doubly linked tree whose each node is connected not only with its child nodes

(by the Left and Right fields) but also with its parent node (by the Parent

field). The Parent field of the root node should be equal to nil.

Tree50. A pointer P1 to some node of a doubly linked tree is given. Output the

pointer P2 to the tree root.

Tree51. Pointers P1, P2, P3 to three nodes of a doubly linked tree are given. Output

the level of each node (the level of the root equals 0).

Tree52. Pointers P1 and P2 to two different nodes of a doubly linked tree are given.

Output the degree of relationship of the node P1 to the node P2 (the degree of

relationship equals −1 if the node P2 is not in the chain of ancestors of the

node P1; otherwise it equals L1 − L2, where L1 and L2 are the levels of nodes P1

and P2 respectively).

Tree53. Pointers P1 and P2 to two different nodes of a doubly linked tree are given.

Find the nearest mutual ancestor of the nodes P1 and P2 and output its

pointer P0.

Tree54. A pointer P1 to the node of a doubly linked tree is given. Create a copy of

the given tree and output a pointer P2 to the root of the created tree.

Tree55. A pointer P1 to the non-root node of a doubly linked tree is given. If the

node P1 has a sibling then remove the sibling together with all its descendants

from the tree and release the memory allocated for removed nodes, if the

node P1 has no sibling then create it and all its descendants as a copy of the

subtree with the root P1. Output the pointer P0 to the parent of P1.

Tree56. Two positive integers L, N (N > L) and a sequence of N integers are given.

Create a doubly linked tree of depth L. Use elements of the given sequence as

node values; add new nodes using the following algorithm: for each node of

the level not greater than L create the node itself, then its left subtree of

corresponding depth, and finally its right subtree. If less than N nodes are

required to create an L depth tree then do not use the rest of elements of the

given sequence. Output the address of the tree root.

21.5. Binary search trees

Tree57. A pointer P1 to the root of a nonempty tree is given. It the tree is a search

tree, that is, values of its nodes form a non-decreasing sequence in inorder tree

walk, then output nil; otherwise output the address of the first node (in inorder

tree walk) that breaks the search-tree property.

Tree58. A pointer P1 to the root of a nonempty tree is given. It the tree is a non-

recurrent search tree, that is, values of its nodes form an increasing sequence

in inorder tree walk, then output nil; otherwise output the address of the first

node (in inorder tree walk) that breaks the search-tree property.

Tree59. A pointer P1 to the root of a nonempty non-recurrent search tree and an

integer K are given. If the tree contains a node whose value equals K then

138

output the address P2 of this node, otherwise output nil. Also output the

amount N of tree nodes that were checked during the search.

Tree60. A pointer P1 to the root of a nonempty search tree and an integer K are

given. Output the amount C of tree nodes whose value equals K. Also output

the amount N of tree nodes that were checked during the search.

Tree61. A pointer P1 to the root of a search tree and an integer K are given (if the

tree is empty then P1 = nil). Add a new node with the value K to the tree so

that the tree still remains a search tree. Output the pointer P2 to the root of the

resulting tree. Use the following recursive algorithm for a tree with the root P:

if P = nil then create a leaf with the value K and assign the address of the leaf

to the pointer P; if the tree root exists then repeat the algorithm for the left

subtree in case K is less than the root value or for the right subtree otherwise.

Tree62. A pointer P1 to the root of a non-recurrent search tree and an integer K are

given (if the tree is empty then P1 = nil). Add a new node with the value K to

the tree so that the tree still remains a non-recurrent search tree. Do not change

the given tree if it already contains a node with the value K. Output the pointer

P2 to the root of the resulting tree. Use the following recursive algorithm for a

tree with the root P: if P = nil then create a leaf with the value K and assign the

address of the leaf to the pointer P; if the tree root exists then repeat the

algorithm for the left subtree in case K is less than the root value or for the

right subtree in case K is greater than the root value.

Tree63. An integer N (> 0), a sequence of N integers and a pointer P1 to the root of a

search tree are given (if the tree is empty then P1 = nil). Add N new nodes with

values from the given sequence to the tree so that the tree still remains a search

tree. Output the pointer P2 to the root of the resulting tree. Use the recursive

algorithm described in Tree61 to add each new node.

Tree64. An integer N (> 0), a sequence of N integers and a pointer P1 to the root of a

non-recurrent search tree are given (if the tree is empty then P1 = nil). Add

N new nodes with values from the given sequence to the tree so that the tree

still remains a non-recurrent search tree. Output the pointer P2 to the root of

the resulting tree. Use the recursive algorithm described in Tree62 to add each

new node.

Tree65. An integer N (> 0) and a sequence of N integers are given. Sort the sequence

by creating a search tree (use the recursive algorithm described in Tree61 to

add each new node). Output the pointer P1 to the root of the created tree. Also

output elements of the sorted sequence using the inorder tree walk.

Tree66. An integer N (> 0) and a sequence of N integers are given. Sort all different

elements of the sequence by creating a non-recurrent search tree (use the

recursive algorithm described in Tree62 to add each new node). Output the

pointer P1 to the root of the created tree. Also output elements of the sorted

sequence using the inorder tree walk.

139

Tree67. Two pointers are given: P1 to the root of a nonempty search tree and P2 to

one of its nodes with no more than one child. Remove the node P2 from the

tree so that the tree still remains a search tree (if the node P2 has a child then

link the child with the parent of the node P2). If the resulting tree is not empty

then output the pointer P3 to its root, otherwise output nil.

Tree68. Two pointers are given: P1 to the root of a nonempty search tree and P2 to

one of its nodes with two children. Remove the node P2 from the tree so that

the tree still remains a search tree. Use the following algorithm: find the

node P with the maximal value in the left subtree of the node P2, then assign

its value to the node P2, and finally remove the node P as in Tree67 (because

the node P should have no more than one child).

Tree69. Two pointers are given: P1 to the root of a nonempty search tree and P2 to

one of its nodes with two children. Remove the node P2 from the tree so that

the tree still remains a search tree. Use the following algorithm: find the

node P with the minimal value in the right subtree of the node P2, then assign

its value to the node P2, and finally remove the node P as in Tree67 (because

the node P should have no more than one child).

Tree70. A pointer P1 to a node of a doubly linked search tree is given. Remove the

node P1 from the tree so that the tree still remains a doubly linked search tree.

If the resulting tree is not empty then output the pointer P2 to its root,

otherwise output nil. If the node P1 has two children then use the algorithm

described in Tree68 for its removing.

Tree71. A pointer P1 to a node of a doubly linked search tree is given. Remove the

node P1 from the tree so that the tree still remains a doubly linked search tree.

If the resulting tree is not empty then output the pointer P2 to its root,

otherwise output nil. If the node P1 has two children then use the algorithm

described in Tree69 for its removing.

21.6. Binary parse trees

Tree72. A string S that represents a nonempty tree is given. The tree representation is

defined as follows (blank characters are not used):

<tree> ::= <empty string> |

 <node>(<left subtree>,<right subtree>)

<node> ::= <digit>

For example, ―4(2(,),6(,7(3(,),)))‖. Create a tree represented by the string S and

output the pointer to its root.

Tree73. A pointer P1 to the root of a nonempty tree is given. Output the string that

describes the tree using the representation specified in Tree72.

Tree74. A string S that represents a nonempty tree is given. The tree representation

is defined as follows (blank characters are not used, the node representation

depends on presence of subtrees of the node):

140

<tree> ::= <node> |

 <node>(<left subtree>,<right subtree>) |

 <node>(<left subtree>) |

 <node>(,<right subtree>)

<node> ::= <digit>

For example, ―4(2,6(,7(3)))‖. Create a tree represented by the string S and

output the pointer to its root.

Tree75. A pointer P1 to the root of a nonempty tree is given. Output the string that

describes the tree using the representation specified in Tree74.

Tree76. A string S that represents a correct expression of integer type is given. The

expression is defined as follows (blank characters are not used):

<expression> ::= <digit> |

 (<expression><operator><expression>)

<operator> ::= + | − | *

Create a tree that represents the given expression (a parse tree): each internal

node corresponds to one of the arithmetic operators and equals −1 for addition,

−2 for subtraction, and −3 for multiplication; a left subtree of a node-operator

represents its left operand and a right subtree represents its right operand; leaf

nodes represent digits. Output the pointer to the root of the created tree.

Tree77. A string S that represents a correct expression of integer type is given. The

expression is defined as follows (the parenthesis-free preorder format):

<expression> ::= <digit> |

 <operator> <expression> <expression>

<operator> ::= + | − | *

Expressions are separated from each other and from the operators by one blank

character. Create a parse tree for the given expression and output the pointer to

its root. See the description of parse tree structure in Tree76; a left subtree of

the node-operator corresponds to its first operand and a right subtree

corresponds to its second operand.

Tree78. A string S that represents a correct expression of integer type is given. The

expression is defined as follows (the parenthesis-free postorder format):

<expression> ::= <digit> |

 <expression> <expression> <operator>

<operator> ::= + | − | *

Expressions are separated from each other and from the operators by one blank

character. Create a parse tree for the given expression and output the pointer to

its root. See the description of parse tree structure in Tree76; a left subtree of

the node-operator corresponds to its first operand and a right subtree

corresponds to its second operand.

141

Tree79. A pointer P1 to the root of a nonempty parse tree is given (see the

description of parse tree structure in Tree76). Output the value of expression

that corresponds to the given tree.

Tree80. A pointer P1 to the root of a nonempty parse tree is given (see the

description of parse tree structure in Tree76). Output the string representation

of expression that corresponds to the given tree. Use the expression format

specified in the same task:

<expression> ::= <digit> |

 (<expression><operator><expression>)

<operator> ::= + | − | *

Tree81. A pointer P1 to the root of a nonempty parse tree is given. Output the string

representation of expression that corresponds to the given tree. Use the

parenthesis-free preorder format (see Tree77).

Tree82. A pointer P1 to the root of a nonempty parse tree is given. Output the string

representation of expression that corresponds to the given tree. Use the

parenthesis-free postorder format (see Tree78).

Tree83. A string S that represents a correct expression of integer type is given. The

expression is defined as follows (blank characters are not used, functions M

and m return their maximal and minimal argument respectively):

<expression> ::= <digit> | M(<expression> , <expression>) |

 m(<expression> , <expression>)

Create a parse tree for the given expression: each internal node corresponds to

one of two available functions and equals −1 for the function M and −2 for the

function m; a left subtree of a node-function represents its first argument and a

right subtree represents its second argument; leaf nodes represent digits.

Output the pointer to the root of the created tree.

Tree84. A pointer P1 to the root of a nonempty parse tree is given (see the

description of parse tree structure in Tree83). Output the value of expression

that corresponds to the given tree.

Tree85. A pointer P1 to the root of a nonempty parse tree is given (see the

description of parse tree structure in Tree83). Output the string representation

of expression that corresponds to the given tree. Use the expression format

specified in the same task:

<expression> ::= <digit> | M(<expression> , <expression>) |

 m(<expression> , <expression>)

21.7. General trees

Tree86. In a general tree a node may have more than two child nodes arranged in

fixed order (from left to right). A general tree may be represented by linked

records of the TNode type as follows: the Left field of any node points to its

leftmost child whereas the Right field points to the nearest right sibling of this

142

node. The tree root has no siblings, therefore its Right field always equals nil.

A pointer P1 to the root of a nonempty binary tree is given. Create a general

tree that corresponds to the given binary tree and output the pointer P2 to the

root of the created general tree.

Tree87. A pointer P1 to the root of a nonempty general tree is given. Each node has

no more than two child nodes. Create a binary tree corresponding to the given

general tree and output the pointer P2 to the root of the created binary tree.

First child of any node of general tree should be the left child of the

correspondent node of binary tree.

Tree88. A pointer P1 to the root of a nonempty general tree is given. Output the

depth of the tree (that is, the maximal level of tree nodes). All siblings are

assumed to be on the same level; the level of the root equals 0.

Tree89. A pointer P1 to the root of a nonempty general tree is given. For each tree

level (including the zero one) output the amount of its nodes. The tree depth is

assumed to be not greater than 10.

Tree90. A pointer P1 to the root of a nonempty general tree is given. For each tree

level (including the zero one) output the sum of values of its nodes. The tree

depth is assumed to be not greater than 10.

Tree91. A pointer P1 to the root of a nonempty general tree and an integer L (≥ 0) are

given. Output the values of nodes of the level L and their amount N (nodes

must be ordered from left to right). If nodes of the level L are absent then

output 0.

Tree92. A pointer P1 to the root of a nonempty general tree is given. Output the

values of all nodes using inorder tree walk as follows: output the first (i. e., the

most left) subtree using inorder tree walk, then output the root value, then

output all other subtrees (from left to right) using inorder tree walk too.

Tree93. A pointer P1 to the root of a nonempty general tree is given. Output the

values of all nodes using postorder tree walk as follows: output all subtrees

(from left to right) using postorder tree walk, then output the root value.

Tree94. A pointer P1 to the root of a nonempty general tree and an integer N (≥ 0)

are given. Output the amount of nodes that have exactly N child nodes (this

amount may be equal to 0).

Tree95. A pointer P1 to the root of a nonempty general tree is given. Output the

pointer P2 to the first node that has the maximal amount of child nodes. Use

inorder tree walk (see Tree92).

Tree96. A pointer P1 to the root of a nonempty general tree is given. Output the

pointer P2 to the last node that has the maximal sum of values of child nodes.

Use postorder tree walk (see Tree93).

Tree97. A pointer P1 to the root of a nonempty general tree is given. In each set of

siblings find the maximal value (that is, the maximal Data field) and assign

this value to each node of the set.

143

Tree98. A pointer P1 to the root of a nonempty general tree is given. In each set of

siblings inverse the order of the node values (that is, swap the Data fields of

the first and the last sibling, then swap the Data fields of the second and the

last but one sibling, and so on).

Tree99. A string S that represents a nonempty general tree is given. The tree

representation is defined as follows (blank characters are not used, siblings are

ordered from left to right):

<tree> ::= <node> |

 <node>(<list of subtrees>)

<list of subtrees> ::= <tree> |

 <tree>,<list of subtrees>

<node> ::= <digit>

For example, ―3(2,7(6,4,5),8(4(2,3),5(1)))‖. Create a tree represented by the

string S and output the pointer to its root.

Tree100. A pointer P1 to the root of a nonempty general tree is given. Output the

string that describes the tree using the representation specified in Tree99.

22. Binary trees (based on objects)

All numbers mentioned in tasks of this group are of integer type. All objects

are of Node type; this class is defined in Programming Taskbook. In the tasks of this

group the Data, Left, Right, and Parent properties of the Node class are used.

Therefore one can assume that the Node class contains the following public members:

[C#]
// Constructors:

 public Node();

 public Node(int aData);

 public Node(Node aLeft, Node aRight, int aData);

 public Node(Node aLeft, Node aRight, int aData, Node aParent);

// Properties (available to read and to write):

 public int Data;

 public Node Left;

 public Node Right;

 public Node Parent;

// Method that releases resources used by the Node object:

 public void Dispose();

[VB.NET]
' Constructors:

 Public Sub New()

 Public Sub New(aData As Integer)

 Public Sub New(aLeft As Node, aRight As Node, _

 aData As Integer)

 Public Sub New(aLeft As Node, aRight As Node, _

 aData As Integer, aParent As Node)

144

' Properties (available to read and to write):

 Public Property Data() As Integer

 Public Property Left() As Node

 Public Property Right() As Node

 Public Property Parent() As Node

' Method that releases resources used by the Node object:

 Public Sub Dispose() Implements IDisposable.Dispose

[Java]
// Constructors:

 Node();

 Node(int aData);

 Node(Node aLeft, Node aRight, int aData);

 Node(Node aLeft, Node aRight, int aData, Node aParent);

// Accessors to properties:

 int getData();

 void setData(int value);

 Node getLeft();

 void setLeft(Node value);

 Node getRight();

 void setRight(Node value);

 Node getParent();

 void setParent(Node value);

// Method that releases resources used by the Node object:

 void dispose();

[Python]
Constructors:

 Node(data = 0)

 Node.for_tree(data = 0, left = None, right = None, parent = None)

Properties (available to read and to write):

 Data

 Left

 Right

 Parent

Method that releases resources used by the Node object:

 dispose()

[Ruby]
Constructors:

 Node.new()

 Node.new(data)

 Node.new(left, right, data)

 Node.new(left, right, data, parent)

Properties (available to read and to write):

 data

 left

 right

 parent

145

Method that releases resources used by the Node object:

 dispose()

In the most of the tasks only the Data, Left, and Right properties of the Node

class are used. The Parent property is required in the tasks devoted to doubly linked

trees.

The value of the Data property of a Node object is considered as the value of

the corresponding tree node.

All these languages use the reference object model; that is, any object variable

is a reference to the object instance. Therefore, the expression ―output the reference

to a tree node‖ means that you should output the value of a corresponding variable of

the Node type.

22.1. Analysis

ObjTree1. An object A1 of Node type is given. The object has public properties

named Data (of integer type), Left and Right (of Node type). The Left and

Right properties of the given object (a tree root) contain references to the left

and right child nodes respectively. Output the Data properties of the tree root

and its left and right children. Also output the references to the left and right

child nodes.

ObjTree2. An object A1 of Node type (a tree root) is given. This object is linked by

its Left and Right properties with objects of the same type (child nodes); they,

in turn, are linked with their own child nodes and so on, until objects whose

Left and Right properties are equal to null. Some of the nodes may have one

property (Left or Right) equals null. Output the amount of tree nodes.

ObjTree3. A root A1 of a nonempty tree and an integer K are given. Output the

amount of nodes whose value equals K.

ObjTree4. A root A1 of a nonempty tree is given. Output the sum of values of all tree

nodes.

ObjTree5. A root A1 of a nonempty tree is given. Output the amount of left child

nodes (the tree root should not be counted).

ObjTree6. A root A1 of a nonempty tree is given. Nodes without children are called

the external nodes or the leaf nodes (the leaves). Output the amount of leaf

nodes.

ObjTree7. A root A1 of a nonempty tree is given. Output the sum of values of all tree

leaves.

ObjTree8. A root A1 of a tree is given, the tree contains at least two nodes. Output

the amount of tree leaves that are the right child nodes.

ObjTree9. A root A1 to the root of a nonempty tree is given. The root node is said to

be on the zero level, its child nodes — on the first level and so on. Output the

depth of the tree (that is, the maximal level of tree nodes). For example, the

depth of a tree containing only a root node is equal to 0.

146

ObjTree10. A root A1 of a nonempty tree is given. For each tree level (including the

zero one) output the amount of its nodes. The tree depth is assumed to be not

greater than 10.

ObjTree11. A root A1 of a nonempty tree is given. For each tree level (including the

zero one) output the sum of values of its nodes. The tree depth is assumed to

be not greater than 10.

ObjTree12. A root A1 of a nonempty tree is given. Using the recursive algorithm

named inorder tree walk output the values of all tree nodes as follows: output

the left subtree (using inorder tree walk), then output the root node, then output

the right subtree (using inorder tree walk too).

ObjTree13. A root A1 of a nonempty tree is given. Using the recursive algorithm

named preorder tree walk output the values of all tree nodes as follows: output

the root node, then output the left subtree (using preorder tree walk), then

output the right subtree (using preorder tree walk too).

ObjTree14. A root A1 of a nonempty tree is given. Using the recursive algorithm

named postorder tree walk output the values of all tree nodes as follows:

output the left subtree (using postorder tree walk), then output the right subtree

(using postorder tree walk too), then output the root node.

ObjTree15. A root A1 of a nonempty tree and an integer N (> 0) are given. The value

of N is not greater than the amount of tree nodes. Output the values of tree

nodes whose order numbers are not greater than N (the tree nodes are

numbered from 1 using inorder tree walk — see ObjTree12).

ObjTree16. A root A1 of a nonempty tree and an integer N (> 0) are given. The value

of N is not greater than the amount of tree nodes. Output the values of tree

nodes whose order numbers are N or greater (the tree nodes are numbered

from 1 using postorder tree walk — see ObjTree14).

ObjTree17. A root A1 of a nonempty tree and two integers N1, N2 (0 < N1 < N2) are

given. The value of N2 is not greater than the amount of tree nodes. Output the

values of tree nodes whose order numbers are in the range N1 to N2 (the tree

nodes are numbered from 1 using preorder tree walk — see ObjTree13).

ObjTree18. A root A1 of a nonempty tree and an integer L (≥ 0) are given. Using tree

walk of any type (see ObjTree12−ObjTree14) output values of all nodes of the

level L. Also output the amount N of these nodes. If the given tree does not

contain nodes of level L then output 0.

ObjTree19. A root A1 of a nonempty tree is given. Output the maximal value of the

tree nodes and the amount of nodes with this value.

ObjTree20. A root A1 to the root of a nonempty tree is given. Output the minimal

value of the tree nodes and the amount of leaves with this value (the amount

may be equal to 0).

ObjTree21. A root A1 of a nonempty tree is given. Output the minimal value of its

leaves.

147

ObjTree22. A root A1 of a tree is given, the tree contains at least two nodes. Output

the maximal value of its internal nodes (that is, nodes with children).

ObjTree23. A root A1 of a nonempty tree is given. Using preorder tree walk, find the

first tree node with the minimal value and output its reference A2.

ObjTree24. A root A1 of a nonempty tree is given. Using inorder tree walk, find the

last node with the maximal odd value and output its reference A2. If the tree

does not contain nodes with odd values then output null.

22.2. Creation

ObjTree25. An integer N (> 0) and a sequence of N integers are given. Create a tree

with N nodes and assign values of the given sequence to tree nodes in order of

their creation. Each node of the tree (except for the root) should be a right

child. Output the reference to the tree root.

ObjTree26. An integer N (> 0) and a sequence of N integers are given. Create a tree

with N nodes and assign values of the given sequence to tree nodes in order of

their creation. Each internal node of the tree should have one child: the root

has a left child, which has a right child, which has a left child, and so on.

Output the reference to the tree root.

ObjTree27. An integer N (> 0) and a sequence of N integers are given. Create a tree

with N nodes and assign values of the given sequence to tree nodes in order of

their creation. Each internal node of the tree should have one child: an internal

node whose value is an odd number has a left child, otherwise it has a right

child. Output the reference to the tree root.

ObjTree28. An even integer N (> 0) and a sequence of N integers are given. Create a

tree with N nodes; left child nodes of the tree should be leaves, right child

nodes should be internal ones. For each internal node create a left child at first,

then create a right one (if it exists). Assign values of the given sequence to tree

nodes in order of their creation. Output the reference to the tree root.

ObjTree29. An even integer N (> 0) and a sequence of N integers are given. Create a

tree with N nodes. Inner node whose value is an odd number should have a left

child leaf, otherwise it should have a right child leaf. For each internal node

create a child leaf node at first, and then create a child internal node (if it

exists). Assign values of the given sequence to tree nodes in order of their

creation. Output the reference to the tree root.

ObjTree30. An integer N (> 0) is given. Create a tree that satisfies the following

conditions: the value of root node equals N; if the value of a node is an even

number K then this node has only a left child whose value equals K/2; if the

value of a node equals 1 then this node is a leaf; if the value of a node is

another odd number K then this node has a left child whose value equals K/2

and has a right child whose value equals K − K/2 (―/‖ denotes the operator of

integer division). Output the reference to the tree root.

148

ObjTree31. Two positive integers L, N (N > L) and a sequence of N integers are

given. Create a tree of depth L. Use elements of the given sequence as node

values; add new nodes using the following algorithm: for each node of the

level not greater than L create the node itself, then its left subtree of

corresponding depth, and finally its right subtree. If less than N nodes are

required to create an L-depth tree then do not use the rest of elements of the

given sequence. Output the reference to the tree root.

ObjTree32. An integer N (> 0) and a sequence of N integers are given. Create a

balanced tree with N nodes (that is, a binary tree which satisfies the following

condition: for each tree node the amount of nodes of its left subtree differs at

most on 1 from the amount of nodes of its right subtree) and output the

reference to the tree root. Use elements of the given sequence as node values;

create the tree by means of the following recursive algorithm: create a root

node, then repeat the algorithm twice: for creating the left subtree with

N/2 nodes and for creating the right subtree with N − 1 − N/2 nodes (―/‖

denotes the operator of integer division).

ObjTree33. An integer N (> 0) is given. Create a balanced tree with N nodes and

output the reference to the tree root. The value of each node should be equal to

its level (for example, the root value is 0, the value of its children is 1, and

so on). Create the balanced tree by means of the recursive algorithm described

in ObjTree32.

ObjTree34. An root A1 of a nonempty tree is given. Create a copy of the tree and

output the reference A2 to its root.

22.3. Changing

ObjTree35. A root A1 of a nonempty tree is given. Double the value of each tree

node.

ObjTree36. A root A1 of a nonempty tree is given. Halve the value of each tree node

whose initial value is an even number.

ObjTree37. A root A1 of a nonempty tree is given. Add 1 to the value of each tree

leaf and subtract 1 from the value of each internal node.

ObjTree38. A root A1 of a nonempty tree is given. For each tree node with two child

swap values of its child nodes (that is, swap values of Data properties of child

nodes).

ObjTree39. A root A1 of a nonempty tree is given. Swap child nodes of each internal

node in the tree (that is, swap values of its Left and Right property).

ObjTree40. A root A1 of a nonempty tree is given. Remove all nodes from the tree

(except the root) and call the Dispose method for each removed node (assign

null to the Left and Right properties of the root).

ObjTree41. A root A1 of a nonempty tree is given, the tree contains at least two

nodes. Remove all tree leaves and assign null to the Left and Right properties

of their parents. Call the Dispose method for each removed node.

149

ObjTree42. A root A1 of a nonempty tree is given. Remove all nodes whose value is

less than the root value, together with all their descendants. Call the Dispose

method for each removed node.

ObjTree43. A root A1 of a nonempty tree is given. Apply the following action to

each tree node that has two child nodes: if the node value is an even number

then remove its right child, otherwise remove its left child. Use preorder tree

walk; each node should be removed together with all its descendants. Call the

Dispose method for each removed node.

ObjTree44. A root A1 of a nonempty tree is given. Add two child nodes to each tree

leaf; the values of left and right child nodes should be equal to 10 and 11

respectively.

ObjTree45. A root A1 of a nonempty tree is given. Add one child node to each thee

leaf; if the leaf value is an odd number then its child should be a left node,

otherwise its child should be a right one. Value of created child node should be

equal to value of its parent.

ObjTree46. A root A1 of a nonempty tree is given. For each tree node with one child

add another child node (a leaf). Value of created child node should be equal to

doubled value of its parent.

ObjTree47. A root A1 of a nonempty tree is given. Transform the given tree to a

perfect tree by adding some new nodes (a perfect tree is a binary tree whose all

leaves are at the same level). Do not change the initial depth of the tree; value

of all new nodes should be equal to −1.

22.4. Doubly linked binary trees

ObjTree48. A node A1 of a tree is given. It is an object of Node type that has public

properties named Data (of integer type), Left, Right, and Parent (of Node

type). The Left and Right properties contain references to the left and right

child nodes respectively, the Parent property contains reference to the parent

node (the Parent property of the root node equals null). Output references AL

and AR to the left and right child of the given node, A0 to its parent, and A2 to

its sibling (siblings are nodes that have the same parent). In some of required

nodes are not exist then output null for each absent node.

ObjTree49. A root A1 of a tree is given. Tree nodes are represented by object of

Node type; they are linked by the Left and Right properties of Node class.

Using the Parent property of Node class, transform the given tree into a

doubly linked tree whose each node is connected not only with its child nodes

(by the Left and Right properties) but also with its parent node (by the Parent

property). The Parent property of the root node should be equal to null.

ObjTree50. A reference A1 to some node of a doubly linked tree is given. Output the

reference A2 to the tree root.

ObjTree51. References P1, P2, P3 to three nodes of a doubly linked tree are given.

Output the level of each node (the level of the root equals 0).

150

ObjTree52. References A1 and A2 to two different nodes of a doubly linked tree are

given. Output the degree of relationship of the node A1 to the node A2 (the

degree of relationship equals −1 if the node A2 is not in the chain of ancestors

of the node A1; otherwise it equals L1 − L2, where L1 and L2 are the levels of

nodes A1 and A2 respectively).

ObjTree53. References A1 and A2 to two different nodes of a doubly linked tree are

given. Find the nearest mutual ancestor of the nodes A1 and A2 and output its

reference A0.

ObjTree54. A reference A1 to the node of a doubly linked tree is given. Create a

copy of the given tree and output a reference A2 to the root of the created tree.

ObjTree55. A reference A1 to the non-root node of a doubly linked tree is given. If

the node A1 has a sibling then remove the sibling together with its descendants

from the tree and call the Dispose method for each removed node. If the node

A1 has no sibling then create it and all its descendants as a copy of a the subtree

with the root A1. Output the reference A0 to the parent of A1.

ObjTree56. Two positive integers L, N (N > L) and a sequence of N integers are

given. Create a doubly linked tree of depth L. Use elements of the given

sequence as node values; add new nodes using the following algorithm: for

each node of the level not greater than L create the node itself, then its left

subtree of corresponding depth, and finally its right subtree. If less than

N nodes are required to create an L depth tree then do not use the rest of

elements of the given sequence. Output the reference to the tree root.

22.5. Binary search trees

ObjTree57. A root A1 of a nonempty tree is given. It the tree is a search tree, that is,

values of its nodes form a non-decreasing sequence in inorder tree walk, then

output null; otherwise output the reference to the first node (in inorder tree

walk) that breaks the search-tree property.

ObjTree58. A root A1 of a nonempty tree is given. It the tree is a non-recurrent

search tree, that is, values of its nodes form an increasing sequence in inorder

tree walk, then output null; otherwise output the reference to the first node (in

inorder tree walk) that breaks the search-tree property.

ObjTree59. A root A1 of a nonempty non-recurrent search tree and an integer K are

given. If the tree contains a node whose value equals K then output the

reference A2 to this node, otherwise output null. Also output the amount N of

tree nodes that were checked during the search.

ObjTree60. A root A1 of a nonempty search tree and an integer K are given. Output

the amount C of tree nodes whose value equals K. Also output the amount N of

tree nodes that were checked during the search.

ObjTree61. A root A1 of a search tree and an integer K are given (if the tree is empty

then P1 = null). Add a new node with the value K to the tree so that the tree

still remains a search tree. Output the reference A2 to the root of the resulting

151

tree. Use the following recursive algorithm for a tree with the root A: if

A = null then create a leaf with the value K and assign the leaf reference to the

object A; if the tree root exists then repeat the algorithm for the left subtree in

case K is less than the root value or for the right subtree otherwise.

ObjTree62. A root A1 of a non-recurrent search tree and an integer K are given (if

the tree is empty then A1 = null). Add a new node with the value K to the tree

so that the tree still remains a non-recurrent search tree. Do not change the

given tree if it already contains a node with the value K. Output the reference

A2 to the root of the resulting tree. Use the following recursive algorithm for a

tree with the root A: if A = null then create a leaf with the value K and assign

the leaf reference to the object A; if the tree root exists then repeat the

algorithm for the left subtree in case K is less than the root value or for the

right subtree in case K is greater than the root value.

ObjTree63. An integer N (> 0), a sequence of N integers and the root A1 of a search

tree are given (if the tree is empty then A1 = null). Add N new nodes with

values from the given sequence to the tree so that the tree still remains a search

tree. Output the reference A2 to the root of the resulting tree. Use the recursive

algorithm described in ObjTree61 to add each new node.

ObjTree64. An integer N (> 0), a sequence of N integers and the root A1 of a non-

recurrent search tree are given (if the tree is empty then A1 = null). Add N new

nodes with values from the given sequence to the tree so that the tree still

remains a non-recurrent search tree. Output the reference A2 to the root of the

resulting tree. Use the recursive algorithm described in ObjTree62 to add each

new node.

ObjTree65. An integer N (> 0) and a sequence of N integers are given. Sort the

sequence by creating a search tree (use the recursive algorithm described in

ObjTree61 to add each new node). Output the reference A1 to the root of the

created tree. Also output elements of the sorted sequence using the inorder tree

walk.

ObjTree66. An integer N (> 0) and a sequence of N integers are given. Sort all

different elements of the sequence by creating a non-recurrent search tree (use

the recursive algorithm described in ObjTree62 to add each new node). Output

the reference A1 to the root of the created tree. Also output elements of the

sorted sequence using the inorder tree walk.

ObjTree67. Two references are given: A1 to the root of a nonempty search tree

and A2 to one of its nodes with no more than one child. Remove the node A2

from the tree so that the tree still remains a search tree (if the node A2 has a

child then link the child with the parent of the node A2). If the resulting tree is

not empty then output the reference A3 to its root, otherwise output null.

ObjTree68. Two references are given: A1 to the root of a nonempty search tree

and A2 to one of its nodes with two children. Remove the node A2 from the tree

so that the tree still remains a search tree. Use the following algorithm: find the

152

node A with the maximal value in the left subtree of the node A2, then assign

its value to the node A2, and finally remove the node A as in ObjTree67

(because the node A should have no more than one child).

ObjTree69. Two references are given: A1 to the root of a nonempty search tree

and A2 to one of its nodes with two children. Remove the node A2 from the tree

so that the tree still remains a search tree. Use the following algorithm: find the

node A with the minimal value in the right subtree of the node A2, then assign

its value to the node A2, and finally remove the node A as in ObjTree67

(because the node A should have no more than one child).

ObjTree70. A reference A1 to a node of a doubly linked search tree is given. Remove

the node A1 from the tree so that the tree still remains a doubly linked search

tree. If the resulting tree is not empty then output the reference A2 to its root,

otherwise output null. If the node A1 has two children then use the algorithm

described in ObjTree68 for its removing.

ObjTree71. A reference A1 to a node of a doubly linked search tree is given.

Remove the node A1 from the tree so that the tree still remains a doubly linked

search tree. If the resulting tree is not empty then output the reference A2 to its

root, otherwise output null. If the node A1 has two children then use the

algorithm described in ObjTree69 for its removing.

22.6. Binary parse trees

ObjTree72. A string S that represents a nonempty tree is given. The tree

representation is defined as follows (blank characters are not used):

<tree> ::= <empty string> |

 <node>(<left subtree>,<right subtree>)

<node> ::= <digit>

For example, ―4(2(,),6(,7(3(,),)))‖. Create a tree represented by the string S and

output the reference to its root.

ObjTree73. A root A1 of a nonempty tree is given. Output the string that describes

the tree using the representation specified in ObjTree72.

ObjTree74. A string S that represents a nonempty tree is given. The tree

representation is defined as follows (blank characters are not used, the node

representation depends on presence of subtrees of the node):

<tree> ::= <node> |

 <node>(<left subtree>,<right subtree>) |

 <node>(<left subtree>) |

 <node>(,<right subtree>)

<node> ::= <digit>

For example, ―4(2,6(,7(3)))‖. Create a tree represented by the string S and

output the reference to its root.

153

ObjTree75. A root A1 of a nonempty tree is given. Output the string that describes

the tree using the representation specified in ObjTree74.

ObjTree76. A string S that represents a correct expression of integer type is given.

The expression is defined as follows (blank characters are not used):

<expression> ::= <digit> |

 (<expression><operator><expression>)

<operator> ::= + | − | *

Create a tree that represents the given expression (a parse tree): each internal

node corresponds to one of the arithmetic operators and equals −1 for addition,

−2 for subtraction, and −3 for multiplication; a left subtree of a node-operator

represents its left operand and a right subtree represents its right operand; leaf

nodes represent digits. Output the reference to the root of the created tree.

ObjTree77. A string S that represents a correct expression of integer type is given.

The expression is defined as follows (the parenthesis-free preorder format):

<expression> ::= <digit> |

 <operator> <expression> <expression>

<operator> ::= + | − | *

Expressions are separated from each other and from the operators by one blank

character. Create a parse tree for the given expression and output the reference

to its root. See the description of parse tree structure in ObjTree76; a left

subtree of the node-operator corresponds to its first operand and a right subtree

corresponds to its second operand.

ObjTree78. A string S that represents a correct expression of integer type is given.

The expression is defined as follows (the parenthesis-free postorder format):

<expression> ::= <digit> |

 <expression> <expression> <operator>

<operator> ::= + | − | *

Expressions are separated from each other and from the operators by one blank

character. Create a parse tree for the given expression and output the reference

to its root. See the description of parse tree structure in ObjTree76; a left

subtree of the node-operator corresponds to its first operand and a right subtree

corresponds to its second operand.

ObjTree79. A root A1 of a nonempty parse tree is given (see the description of parse

tree structure in ObjTree76). Output the value of expression that corresponds

to the given tree.

ObjTree80. A root A1 of a nonempty parse tree is given (see the description of parse

tree structure in ObjTree76). Output the string representation of expression that

corresponds to the given tree. Use the expression format specified in the same

task:

154

<expression> ::= <digit> |

 (<expression><operator><expression>)

<operator> ::= + | − | *

ObjTree81. A root A1 of a nonempty parse tree is given. Output the string

representation of expression that corresponds to the given tree. Use the

parenthesis-free preorder format (see ObjTree77).

ObjTree82. A root A1 of a nonempty parse tree is given. Output the string

representation of expression that corresponds to the given tree. Use the

parenthesis-free postorder format (see ObjTree78).

ObjTree83. A string S that represents a correct expression of integer type is given.

The expression is defined as follows (blank characters are not used,

functions M and m return their maximal and minimal argument respectively):

<expression> ::= <digit> | M(<expression> , <expression>) |

 m(<expression> , <expression>)

Create a parse tree for the given expression: each internal node corresponds to

one of two available functions and equals −1 for the function M and −2 for the

function m; a left subtree of a node-function represents its first argument and a

right subtree represents its second argument; leaf nodes represent digits.

Output the reference to the root of the created tree.

ObjTree84. A root A1 of a nonempty parse tree is given (see the description of parse

tree structure in ObjTree83). Output the value of expression that corresponds

to the given tree.

ObjTree85. A root A1 of a nonempty parse tree is given (see the description of parse

tree structure in ObjTree83). Output the string representation of expression that

corresponds to the given tree. Use the expression format specified in the same

task:

<expression> ::= <digit> | M(<expression> , <expression>) |

 m(<expression> , <expression>)

22.7. General trees

ObjTree86. In a general tree a node may have more than two child nodes arranged

in fixed order (from left to right). A general tree may be represented by linked

records of the Node class as follows: the Left property of any node refers to its

leftmost child whereas the Right property refers to the nearest right sibling of

this node. The tree root has no siblings, therefore its Right property always

equals null. A root A1 of a nonempty binary tree is given. Create a general tree

that corresponds to the given binary tree and output the reference A2 to the root

of the created general tree.

ObjTree87. A root A1 of a nonempty general tree is given. Each node has no more

than two child nodes. Create a binary tree corresponding to the given general

tree and output the reference A2 to the root of the created binary tree. First

155

child of any node of general tree should be the left child of the correspondent

node of binary tree.

ObjTree88. A root A1 of a nonempty general tree is given. Output the depth of the

tree (that is, the maximal level of tree nodes). All siblings are assumed to be on

the same level; the level of the root equals 0.

ObjTree89. A root A1 of a nonempty general tree is given. For each tree level

(including the zero one) output the amount of its nodes. The tree depth is

assumed to be not greater than 10.

ObjTree90. A root A1 of a nonempty general tree is given. For each tree level

(including the zero one) output the sum of values of its nodes. The tree depth is

assumed to be not greater than 10.

ObjTree91. A root A1 of a nonempty general tree and a integer L (≥ 0) are given.

Output the values of nodes of the level L and their amount N (nodes must be

ordered from left to right). If nodes of the level L are absent then output 0.

ObjTree92. A root A1 of a nonempty general tree is given. Output the values of all

nodes using inorder tree walk as follows: output the first (i. e., the most left)

subtree using inorder tree walk, then output the root value, then output all other

subtrees (from left to right) using inorder tree walk too.

ObjTree93. A root A1 of a nonempty general tree is given. Output the values of all

nodes using postorder tree walk as follows: output all subtrees (from left to

right) using postorder tree walk, then output the root value.

ObjTree94. A root A1 of a nonempty general tree and an integer N (≥ 0) are given.

Output the amount of nodes that have exactly N child nodes (this amount may

be equal to 0).

ObjTree95. A root A1 of a nonempty general tree is given. Output the reference A2 to

the first node that has the maximal amount of child nodes. Use inorder tree

walk (see ObjTree92).

ObjTree96. A root A1 of a nonempty general tree is given. Output the reference A2 to

the last node that has the maximal sum of values of child nodes. Use postorder

tree walk (see ObjTree93).

ObjTree97. A root A1 of a nonempty general tree is given. In each set of siblings find

the maximal value (that is, the maximal Data property) and assign this value to

each node of the set.

ObjTree98. A root A1 of a nonempty general tree is given. In each set of siblings

inverse the order of the node values (that is, swap the Data properties of the

first and the last sibling, then swap the Data properties of the second and the

last but one sibling, and so on).

ObjTree99. A string S that represents a nonempty general tree is given. The tree

representation is defined as follows (blank characters are not used, siblings are

ordered from left to right):

156

<tree> ::= <node> |

 <node>(<list of subtrees>)

<list of subtrees> ::= <tree> |

 <tree>,<list of subtrees>

<node> ::= <digit>

For example, ―3(2,7(6,4,5),8(4(2,3),5(1)))‖. Create a tree represented by the

string S and output the reference to its root.

ObjTree100. A root A1 of a nonempty general tree is given. Output the string that

describes the tree using the representation specified in ObjTree99.

157

Contents

Preface .. 3

Programming Taskbook .. 3

General remarks on data types and terminology .. 4

1. Input-output and assignment ... 5

2. Integers .. 8

3. Logical expressions .. 10

4. Conditional statement ... 12

5. Selection statement ... 14

6. Loop with the parameter ... 16

Nested loops .. 19

7. Loop with the condition .. 20

8. Procedures and functions .. 22

8.1. Procedures with numeric parameters... 22

8.2. Functions with numeric parameters... 24

8.3. Additional tasks ... 26

9. Functions ... 30

9.1. Functions with numeric parameters... 30

9.2. Additional tasks ... 34

10. Numerical sequences .. 38

Nested loops .. 39

11. Minimums and maximums ... 41

12. One-dimensional arrays .. 43

12.1. Array creation .. 44

12.2. Output of array elements ... 44

12.3. Analysis of array elements .. 45

12.4. Work with several one-dimensional arrays ... 47

12.5. Array changing .. 49

12.6. Series of equal numbers ... 53

12.7. Sets of points ... 54

13. Two-dimensional arrays (matrices) .. 55

13.1. Matrix creation .. 55

13.2. Output of matrix elements ... 56

13.3. Analysis of matrix elements .. 57

13.4. Matrix changing ... 59

13.5. Diagonals of a square matrix ... 61

14. Characters and strings ... 63

14.1. Basic operations ... 63

14.2. Word processing .. 65

14.3. Additional tasks ... 67

15. Binary files .. 68

15.1. Basic operations ... 69

15.2. Untyped files processing ... 72

15.3. Work with several numeric files. Archival files .. 73

15.4. Files of characters and files of strings ... 74

158

15.5. Files containing matrices ... 76

16. Text files ... 78

16.1. Basic operations ... 79

16.2. Text analysis and formatting ... 80

16.3. Text files with numeric data .. 82

16.4. Additional tasks ... 83

17. Structured data types in procedures and functions ... 85

17.1. Arrays processing .. 85

17.2. Strings processing .. 89

17.3. Files processing ... 91

17.4. Records processing .. 93

18. Recursion .. 95

18.1. Simple algorithms .. 95

18.2. Parsing of expressions ... 97

18.3. Backtracking .. 98

19. Dynamic data structures (based on pointers) .. 99

19.1. Nodes and chains of nodes .. 100

19.2. Stack .. 100

19.3. Queue ... 102

19.4. Doubly linked list .. 105

19.5. List with the barrier component .. 112

20. Dynamic data structures (based on objects) ... 115

20.1. Nodes and chains of nodes .. 116

20.2. Stack .. 117

20.3. Queue ... 119

20.4. Doubly linked list .. 121

20.5. List with the barrier component .. 128

21. Binary trees (based on pointers) ... 131

21.1. Analysis ... 132

21.2. Creation ... 134

21.3. Changing .. 135

21.4. Doubly linked binary trees .. 136

21.5. Binary search trees .. 137

21.6. Binary parse trees .. 139

21.7. General trees .. 141

22. Binary trees (based on objects) ... 143

22.1. Analysis ... 145

22.2. Creation ... 147

22.3. Changing .. 148

22.4. Doubly linked binary trees .. 149

22.5. Binary search trees .. 150

22.6. Binary parse trees .. 152

22.7. General trees .. 154

	Preface
	Programming Taskbook
	General remarks on data types and terminology

	Input-output and assignment
	Integers
	Logical expressions
	Conditional statement
	Selection statement
	Loop with the parameter
	Nested loops

	Loop with the condition
	Procedures and functions
	Procedures with numeric parameters
	Functions with numeric parameters
	Additional tasks

	Functions
	Functions with numeric parameters
	Additional tasks

	Numerical sequences
	Nested loops

	Minimums and maximums
	One-dimensional arrays
	Array creation
	Output of array elements
	Analysis of array elements
	Work with several one-dimensional arrays
	Array changing
	Series of equal numbers
	Sets of points

	Two-dimensional arrays (matrices)
	Matrix creation
	Output of matrix elements
	Analysis of matrix elements
	Matrix changing
	Diagonals of a square matrix

	Characters and strings
	Basic operations
	Word processing
	Additional tasks

	Binary files
	Basic operations
	Untyped files processing
	Work with several numeric files. Archival files
	Files of characters and files of strings
	Files containing matrices

	Text files
	Basic operations
	Text analysis and formatting
	Text files with numeric data
	Additional tasks

	Structured data types in procedures and functions
	Arrays processing
	Strings processing
	Files processing
	Records processing

	Recursion
	Simple algorithms
	Parsing of expressions
	Backtracking

	Dynamic data structures (based on pointers)
	Nodes and chains of nodes
	Stack
	Queue
	Doubly linked list
	List with the barrier component

	Dynamic data structures (based on objects)
	Nodes and chains of nodes
	Stack
	Queue
	Doubly linked list
	List with the barrier component

	Binary trees (based on pointers)
	Analysis
	Creation
	Changing
	Doubly linked binary trees
	Binary search trees
	Binary parse trees
	General trees

	Binary trees (based on objects)
	Analysis
	Creation
	Changing
	Doubly linked binary trees
	Binary search trees
	Binary parse trees
	General trees

	Contents

